New strategy for cleaning "eternal chemicals" discovered that addresses pollution caused by fire-fighting foams | Karlobag.eu

Scientists from the University of California, Riverside, and Clarkson University have developed a new method for cleaning “eternal chemicals” in water, combining UV light, sulfite, and electrochemical oxidation. This innovative method allows almost complete destruction of PFAS compounds in contaminated water without the need for additional heat or high pressure.

New strategy for cleaning "eternal chemicals" discovered that addresses pollution caused by fire-fighting foams | Karlobag.eu
Photo by: Domagoj Skledar/ arhiva (vlastita)

Given the increasing regulation of "forever chemicals" by the U.S. Environmental Protection Agency (EPA), military and commercial aviation officials are seeking ways to clean up the pollution caused by decades of using firefighting foams at military bases and commercial airports.

Firefighting foams contain hundreds of harmful forever chemicals, known as PFAS or per- and polyfluoroalkyl substances. These compounds have extremely strong bonds between fluorine and carbon, allowing them to persist indefinitely in the environment. PFAS compounds are also found in many other products and now contaminate underground water sources used by many municipal water supplies across the country.

Given the association with higher risks of certain cancers and other diseases, the EPA issued a new regulation last month requiring water supply companies to reduce contamination if levels of certain PFAS compounds exceed 4 parts per trillion.

Fortunately, a joint discovery by scientists at the University of California, Riverside, and Clarkson University in Potsdam, N.Y., provides a new strategy for cleaning up these pollutants.

The method is detailed this month in the journal Nature Water. It involves treating heavily contaminated water with ultraviolet (UV) light, sulfite, and a process called electrochemical oxidation, explained UCR associate professor Jinyong Liu.

"This work continues our research on UV-based treatment, but this time we collaborated with an expert in electrochemical oxidation at Clarkson University," said Liu, who has published nearly 20 papers on treating PFAS contamination in polluted water. "We combined these two methods and achieved nearly complete destruction of PFAS in various water samples contaminated with foams."

Liu noted that collaboration with the team led by assistant professor Yang Yang at Clarkson solved major technical problems. Specifically, foams contain various other concentrated organic compounds that make it difficult to break the strong bonds between fluorine and carbon in PFAS compounds.

However, Liu and Yang discovered that electrochemical oxidation also breaks down these organic compounds. Their process allows these reactions to occur at room temperature without the need for additional heat or high pressure to stimulate the reaction.

"In the real world, contaminated water can be very complex," said Liu. "It contains many things that could potentially slow down the reaction."

PFAS compounds are used in thousands of products, from chip bags to non-stick cookware, but firefighting foams are the primary source of PFAS groundwater contamination because they have been used for decades to extinguish aircraft fuel fires at hundreds of military sites and commercial airports. These foams have also been routinely used for smaller fuel spills as a preventative measure to prevent fires.

Invented by the U.S. Navy in the 1960s, the foams form a water film around burning gasoline and other flammable liquids, quickly depriving the fire of oxygen and extinguishing it.

Due to widespread use, the U.S. Department of Defense has ordered an assessment of 715 military sites across the country for PFAS releases and by the end of last year found that 574 of those sites require further investigation or cleanup under federal law.

PFAS cleanups became more urgent last month when the EPA introduced a new regulation requiring water utilities to reduce contamination if levels of certain PFAS compounds exceed 4 parts per trillion.

Liu said the method he developed with Yang is well suited for cleaning heavily contaminated water used to flush tanks, hoses, and other firefighting equipment. The method can also be used to treat leftover foam tanks containing PFAS.

Their method can also help water supply companies address groundwater contamination. Contaminated groundwater is often treated with ion exchange technologies where PFAS molecules bind to resin beads in large treatment tanks. The UV light and electrochemical oxidation method developed by Liu and Yang can also help regenerate the beads so they can be reused, Liu said.

"We want to have sustainable resin management," said Liu. "We want to reuse it."

The title of the study is "Near-Complete Destruction of PFAS in Aqueous Film-Forming Foam Using Integrated Photo-Electrochemical Processes." Besides Liu and Yang, the study authors are Yunqiao Guan, Zekun Liu, Nanyang Yang, Shasha Yang, and Luz Estefanny Quispe-Cardenas, who are current or former students at UCR and Clarkson.

This research was funded by the U.S. Department of Defense Strategic Environmental Research and Development Program.

Source: University of California

Czas utworzenia: 30 czerwca, 2024
Uwaga dla naszych czytelników:
Portal Karlobag.eu dostarcza informacji o codziennych wydarzeniach i tematach ważnych dla naszej społeczności. Podkreślamy, że nie jesteśmy ekspertami w dziedzinach naukowych ani medycznych. Wszystkie publikowane informacje służą wyłącznie celom informacyjnym.
Proszę nie uważać informacji na naszym portalu za całkowicie dokładne i zawsze skonsultować się ze swoim lekarzem lub specjalistą przed podjęciem decyzji na podstawie tych informacji.
Nasz zespół dokłada wszelkich starań, aby zapewnić Państwu aktualne i istotne informacje, a wszelkie treści publikujemy z wielkim zaangażowaniem.
Zapraszamy do podzielenia się z nami swoimi historiami z Karlobag!
Twoje doświadczenia i historie o tym pięknym miejscu są cenne i chcielibyśmy je usłyszeć.
Możesz je przesłać napisz do nas na adres karlobag@karlobag.eu.
Twoje historie wniosą wkład w bogate dziedzictwo kulturowe naszego Karlobagu.
Dziękujemy, że podzieliłeś się z nami swoimi wspomnieniami!

AI Lara Teč

AI Lara Teč to innowacyjna dziennikarka AI portalu Karlobag.eu, która specjalizuje się w relacjonowaniu najnowszych trendów i osiągnięć w świecie nauki i technologii. Dzięki swojej wiedzy eksperckiej i podejściu analitycznemu Lara zapewnia dogłębne spostrzeżenia i wyjaśnienia na najbardziej złożone tematy, czyniąc je przystępnymi i zrozumiałymi dla wszystkich czytelników.

Ekspercka analiza i jasne wyjaśnienia
Lara wykorzystuje swoją wiedzę do analizy i wyjaśnienia złożonych zagadnień naukowych i technologicznych, koncentrując się na ich znaczeniu i wpływie na życie codzienne. Niezależnie od tego, czy chodzi o najnowsze innowacje technologiczne, przełomowe osiągnięcia badawcze czy trendy w cyfrowym świecie, Lara zapewnia dokładną analizę i wyjaśnienia, podkreślając kluczowe aspekty i potencjalne implikacje dla czytelników.

Twój przewodnik po świecie nauki i technologii
Artykuły Lary mają na celu przeprowadzić Cię przez złożony świat nauki i technologii, dostarczając jasnych i precyzyjnych wyjaśnień. Jej umiejętność rozkładania skomplikowanych koncepcji na zrozumiałe części sprawia, że ​​jej artykuły są niezastąpionym źródłem informacji dla każdego, kto chce być na bieżąco z najnowszymi osiągnięciami naukowymi i technologicznymi.

Więcej niż sztuczna inteligencja – Twoje okno na przyszłość
AI Lara Teč jest nie tylko dziennikarką; to okno na przyszłość, dające wgląd w nowe horyzonty nauki i technologii. Jej fachowe wskazówki i dogłębna analiza pomagają czytelnikom zrozumieć i docenić złożoność i piękno innowacji, które kształtują nasz świat. Dzięki Larie bądź na bieżąco i inspiruj się najnowszymi osiągnięciami świata nauki i technologii.