Postavke privatnosti

Opracowanie techniki oceny wiarygodności modeli fundamentów przed zastosowaniem do konkretnych zadań z Laboratorium AI mit i MIT-IBM Watson

Badacze z mit i Laboratorium AI MIT-IBM Watson opracowali nową technikę oceny niezawodności modeli fundamentów przed zastosowaniem ich do określonych zadań, wykorzystując algorytm do oceny spójności modelu. Rozwiązanie to może pomóc w ograniczeniu błędów w sytuacjach krytycznych dla bezpieczeństwa i umożliwić lepszy wybór modelu bez konieczności testowania na rzeczywistych danych.

Opracowanie techniki oceny wiarygodności modeli fundamentów przed zastosowaniem do konkretnych zadań z Laboratorium AI mit i MIT-IBM Watson
Photo by: Domagoj Skledar/ arhiva (vlastita)

Badacze z MIT i MIT-IBM Watson AI Lab opracowali technikę oceny niezawodności modeli podstawowych (foundation models) przed ich zastosowaniem do określonego zadania. Osiągają to poprzez analizę zestawu modeli podstawowych, które nieznacznie się od siebie różnią. Algorytm ocenia spójność reprezentacji, które każdy model uczy się na tych samych danych testowych. Jeśli reprezentacje są spójne, model jest uznawany za niezawodny.

Porównując swoją technikę z najnowocześniejszymi metodami, badacze odkryli, że ich metoda jest lepsza w uchwyceniu niezawodności modeli podstawowych w różnych zadaniach klasyfikacyjnych.

Ta technika pozwala użytkownikom zdecydować, czy model należy zastosować w określonym środowisku, bez konieczności testowania na rzeczywistych danych. Jest to szczególnie przydatne w sytuacjach, w których dane mogą nie być dostępne z powodu problemów z prywatnością, takich jak dane zdrowotne. Ponadto technika może rankingować modele według wyników niezawodności, co pozwala użytkownikom wybrać najlepszy model do swojego zadania.

„Wszystkie modele mogą popełniać błędy, ale modele, które wiedzą, kiedy się mylą, są bardziej przydatne. Problem kwantyfikacji niepewności lub niezawodności jest bardziej wyzwaniem dla tych modeli podstawowych, ponieważ ich abstrakcyjne reprezentacje są trudne do porównania. Nasza metoda pozwala na kwantyfikację, jak niezawodna jest reprezentacja modelu dla dowolnych danych wejściowych,” mówi główny autor Navid Azizan, profesor w MIT i członek Laboratorium Systemów Informacji i Decyzji (LIDS).

Wraz z nim nad pracą pracowali również główny autor Young-Jin Park, doktorant w LIDS; Hao Wang, naukowiec badawczy w MIT-IBM Watson AI Lab; i Shervin Ardeshir, starszy naukowiec badawczy w Netflix. Praca zostanie zaprezentowana na Konferencji o Niepewności w Sztucznej Inteligencji.

Pomiar Konsensusu
Tradycyjne modele uczenia maszynowego są trenowane do wykonywania określonego zadania. Te modele zazwyczaj dają konkretne przewidywania na podstawie danych wejściowych. Na przykład, model może powiedzieć, czy dane zdjęcie zawiera kota lub psa. W tym przypadku ocena niezawodności może być tak prosta, jak sprawdzenie ostatecznego przewidywania.

Ale modele podstawowe są inne. Model jest wstępnie trenowany przy użyciu ogólnych danych, w środowisku, w którym jego twórcy nie znają wszystkich zadań, do których zostanie zastosowany. Użytkownicy dostosowują go do swoich specyficznych zadań po jego wstępnym przeszkoleniu.

Aby ocenić niezawodność modeli podstawowych, badacze zastosowali podejście zespołowe, trenując kilka modeli, które dzielą wiele cech, ale nieznacznie się różnią.

„Nasza idea jest podobna do pomiaru konsensusu. Jeśli wszystkie te modele podstawowe dają spójne reprezentacje dla dowolnych danych w naszym zestawie danych, możemy powiedzieć, że model jest niezawodny,” mówi Park.

Ale napotkali problem: jak porównać abstrakcyjne reprezentacje?
„Te modele dają tylko wektor, składający się z kilku liczb, więc nie możemy ich łatwo porównać,” dodaje.

Rozwiązali problem, używając idei zwanej spójnością sąsiedztwa.

W swoim podejściu badacze przygotowują zestaw niezawodnych punktów odniesienia do testowania w zespole modeli. Następnie, dla każdego modelu, badają punkty odniesienia znajdujące się blisko reprezentacji modelu dla punktu testowego.

Obserwując spójność sąsiednich punktów, mogą ocenić niezawodność modelu.

Wyrównywanie Reprezentacji
Modele podstawowe mapują punkty danych na to, co jest znane jako przestrzeń reprezentacji. Jednym ze sposobów myślenia o tej przestrzeni jest kula. Każdy model mapuje podobne punkty danych w to samo miejsce w swojej kuli, więc obrazy kotów idą w jedno miejsce, a obrazy psów w inne.

Ale każdy model mapowałby zwierzęta inaczej w swojej kuli, więc podczas gdy koty mogłyby być grupowane w pobliżu Bieguna Południowego jednej kuli, inny model mógłby mapować koty gdzieś na półkuli północnej.

Badacze używają sąsiednich punktów jako kotwic do wyrównania tych kul, aby mogli porównać reprezentacje. Jeśli sąsiedzi punktu danych są spójni w różnych reprezentacjach, możemy być pewni niezawodności modelu dla tego punktu.

Kiedy testowali to podejście na szerokim zakresie zadań klasyfikacyjnych, odkryli, że było ono znacznie bardziej spójne niż metody bazowe. Ponadto nie było ono zmieszane przez trudne punkty testowe, które inne metody myliły.

Co więcej, ich podejście można wykorzystać do oceny niezawodności dla dowolnych danych wejściowych, dzięki czemu można ocenić, jak dobrze model działa dla określonego typu osoby, takiej jak pacjent z określonymi cechami.

„Nawet jeśli wszystkie modele mają średnie wyniki, z perspektywy indywidualnej, preferujesz ten, który najlepiej działa dla tej osoby,” mówi Wang.

Jednym ograniczeniem jest konieczność trenowania zespołu modeli podstawowych, co jest kosztowne obliczeniowo. W przyszłości planują znaleźć bardziej efektywne sposoby budowy wielu modeli, być może poprzez użycie małych perturbacji jednego modelu.

„Z obecnym trendem wykorzystywania modeli podstawowych do ich reprezentacji w celu wspierania różnych zadań — od dostrajania po generowanie z uzupełnianiem z wyszukiwania — temat kwantyfikacji niepewności na poziomie reprezentacji staje się coraz ważniejszy, ale wyzwaniem, ponieważ same reprezentacje nie mają podstawy. Zamiast tego, ważne jest, jak reprezentacje różnych wejść są ze sobą powiązane, idea, którą ta praca zgrabnie ujmuje poprzez proponowany wynik spójności sąsiedztwa,” mówi Marco Pavone, profesor nadzwyczajny w Departamencie Aeronautyki i Astronautyki na Uniwersytecie Stanford, który nie był zaangażowany w tę pracę. „To obiecujący krok w kierunku wysokiej jakości kwantyfikacji niepewności dla modeli reprezentacyjnych, i jestem podekscytowany, widząc przyszłe rozszerzenia, które mogą funkcjonować bez potrzeby zespołów modeli, aby naprawdę umożliwić to podejście w modelach o rozmiarach foundation.”

Ta praca była częściowo finansowana przez MIT-IBM Watson AI Lab, MathWorks i Amazon.

Znajdź nocleg w pobliżu

Czas utworzenia: 17 lipca, 2024

Redakcja nauki i technologii

Nasza Redakcja Nauki i Technologii powstała z wieloletniej pasji do badania, interpretowania i przybliżania złożonych tematów zwykłym czytelnikom. Piszą u nas pracownicy i wolontariusze, którzy od dziesięcioleci śledzą rozwój nauki i innowacji technologicznych – od odkryć laboratoryjnych po rozwiązania zmieniające codzienne życie. Choć piszemy w liczbie mnogiej, za każdym tekstem stoi prawdziwa osoba z dużym doświadczeniem redakcyjnym i dziennikarskim oraz głębokim szacunkiem dla faktów i informacji możliwych do zweryfikowania.

Nasza redakcja opiera swoją pracę na przekonaniu, że nauka jest najsilniejsza wtedy, gdy jest dostępna dla wszystkich. Dlatego dążymy do jasności, precyzji i zrozumiałości, unikając uproszczeń, które mogłyby obniżyć jakość treści. Często spędzamy godziny, analizując badania, dokumenty techniczne i źródła specjalistyczne, aby każdy temat przedstawić w sposób ciekawy, a nie obciążający. W każdym tekście staramy się łączyć wiedzę naukową z codziennym życiem, pokazując, jak idee z ośrodków badawczych, uniwersytetów i laboratoriów technologicznych kształtują świat wokół nas.

Wieloletnie doświadczenie dziennikarskie pozwala nam rozpoznać to, co dla czytelnika naprawdę ważne – niezależnie od tego, czy chodzi o postępy w sztucznej inteligencji, odkrycia medyczne, rozwiązania energetyczne, misje kosmiczne czy urządzenia, które trafiają do naszego życia codziennego, zanim zdążymy pomyśleć o ich możliwościach. Nasze spojrzenie na technologię nie jest wyłącznie techniczne; interesują nas także ludzkie historie stojące za wielkimi osiągnięciami – badacze, którzy latami dopracowują projekty, inżynierowie zamieniający idee w działające systemy oraz wizjonerzy przesuwający granice możliwości.

W naszej pracy kieruje nami również poczucie odpowiedzialności. Chcemy, by czytelnik mógł zaufać informacjom, które podajemy, dlatego sprawdzamy źródła, porównujemy dane i nie spieszymy się z publikacją, jeśli coś nie jest całkowicie jasne. Zaufanie buduje się wolniej niż pisze wiadomość, ale wierzymy, że tylko taki dziennikarski wysiłek ma trwałą wartość.

Dla nas technologia to coś więcej niż urządzenia, a nauka to coś więcej niż teoria. To dziedziny, które napędzają postęp, kształtują społeczeństwo i otwierają nowe możliwości dla wszystkich, którzy chcą zrozumieć, jak działa świat dziś i dokąd zmierza jutro. Dlatego podchodzimy do każdego tematu z powagą, ale i z ciekawością – bo to właśnie ciekawość otwiera drzwi najlepszym tekstom.

Naszą misją jest przybliżanie czytelnikom świata, który zmienia się szybciej niż kiedykolwiek wcześniej, w przekonaniu, że rzetelne dziennikarstwo może być mostem między ekspertami, innowatorami i wszystkimi, którzy chcą zrozumieć, co dzieje się za nagłówkami. W tym widzimy nasze właściwe zadanie: przekształcać to, co złożone, w zrozumiałe, to, co odległe, w bliskie, a to, co nieznane, w inspirujące.

UWAGA DLA NASZYCH CZYTELNIKÓW
Karlobag.eu dostarcza wiadomości, analizy i informacje o globalnych wydarzeniach oraz tematach interesujących czytelników na całym świecie. Wszystkie opublikowane informacje służą wyłącznie celom informacyjnym.
Podkreślamy, że nie jesteśmy ekspertami w dziedzinie nauki, medycyny, finansów ani prawa. Dlatego przed podjęciem jakichkolwiek decyzji na podstawie informacji z naszego portalu zalecamy konsultację z wykwalifikowanymi ekspertami.
Karlobag.eu może zawierać linki do zewnętrznych stron trzecich, w tym linki afiliacyjne i treści sponsorowane. Jeśli kupisz produkt lub usługę za pośrednictwem tych linków, możemy otrzymać prowizję. Nie mamy kontroli nad treścią ani politykami tych stron i nie ponosimy odpowiedzialności za ich dokładność, dostępność ani za jakiekolwiek transakcje przeprowadzone za ich pośrednictwem.
Jeśli publikujemy informacje o wydarzeniach lub sprzedaży biletów, prosimy pamiętać, że nie sprzedajemy biletów ani bezpośrednio, ani poprzez pośredników. Nasz portal wyłącznie informuje czytelników o wydarzeniach i możliwościach zakupu biletów poprzez zewnętrzne platformy sprzedażowe. Łączymy czytelników z partnerami oferującymi usługi sprzedaży biletów, jednak nie gwarantujemy ich dostępności, cen ani warunków zakupu. Wszystkie informacje o biletach pochodzą od stron trzecich i mogą ulec zmianie bez wcześniejszego powiadomienia.
Wszystkie informacje na naszym portalu mogą ulec zmianie bez wcześniejszego powiadomienia. Korzystając z tego portalu, zgadzasz się czytać treści na własne ryzyko.