Entwicklung von neuronalen Netzen, die menschliche Entscheidungen nachahmen

Entwicklung neuronaler Netze, die menschliche Entscheidungen nachahmen: ein neuer Ansatz in der künstlichen Intelligenz

Forscher der Georgia Tech haben ein neuronales Netzwerk namens RTNet entwickelt, das menschliche Entscheidungen nachahmt, indem es Bayes 'sche neuronale Netze und Beweisakkumulationsprozesse verwendet, um menschenähnliche Entscheidungen zu treffen. Ziel ist es, die kognitive Belastung der alltäglichen Entscheidungsfindung zu reduzieren.

Entwicklung neuronaler Netze, die menschliche Entscheidungen nachahmen: ein neuer Ansatz in der künstlichen Intelligenz
Photo by: Domagoj Skledar/ arhiva (vlastita)

Menschen treffen täglich tausende Entscheidungen, von einfachen wie dem Überqueren der Straße bis hin zu komplexeren wie der Auswahl von Lebensmitteln. Forscher am Georgia Tech haben ein neuronales Netzwerk entwickelt, das menschliche Entscheidungen nachahmt, mit dem Ziel, sich der menschlichen Denk- und Entscheidungsweise anzunähern. Dieses Netzwerk, genannt RTNet, verwendet ein Bayessches neuronales Netzwerk (BNN) und einen Prozess der Beweisakkumulation, um Entscheidungen auf ähnliche Weise wie Menschen zu treffen.

Entschlüsselung von Entscheidungen
"Neuronale Netzwerke treffen normalerweise Entscheidungen, ohne ihre Sicherheitsstufe in diese Entscheidungen auszudrücken", sagte Farshad Rafiei, ein Doktor der Psychologie von Georgia Tech. "Das ist einer der Hauptunterschiede im Vergleich zu Menschen." Dieses neue Netzwerk kann jedoch Antworten liefern, die einen Grad an Sicherheit beinhalten, was ein entscheidender Schritt in Richtung menschliches Entscheidungsverhalten ist.

Große Sprachmodelle (LLMs) erfinden oft Antworten, wenn sie die richtigen Informationen nicht wissen. Im Gegensatz zu ihnen geben Menschen in ähnlichen Situationen ihre Unwissenheit zu. Der Aufbau von Netzwerken, die menschliche Reaktionen besser nachahmen, kann diese Art von Fehlern reduzieren und die Genauigkeit der Antworten verbessern.

Modellaufbau
Das Team von Georgia Tech hat sein Netzwerk an handschriftlichen Ziffern aus dem bekannten MNIST-Datensatz trainiert. Um die Genauigkeit des Modells zu testen, fügten sie den Bildern Rauschen hinzu, was die Erkennung der Zahlen erschwerte. Das Modell wurde dann mit den Ergebnissen menschlicher Probanden verglichen. Sechzig Studenten beobachteten die gleichen Bilder und drückten ihr Vertrauen in die Entscheidungen aus, und die Ergebnisse zeigten Ähnlichkeiten in Genauigkeit, Reaktionszeit und Vertrauensmustern zwischen Menschen und dem Netzwerk.

Die Forscher verwendeten zwei Schlüsselelemente: BNN, das Wahrscheinlichkeiten zur Entscheidungsfindung verwendet, und den Prozess der Beweisakkumulation, der Beweise für jede Wahl verfolgt. BNN liefert jedes Mal unterschiedliche Antworten, und der Akkumulationsprozess kann eine Wahl über eine andere bevorzugen, bis genügend Beweise für eine Entscheidung gesammelt sind.

Auch die Geschwindigkeit der Entscheidungsfindung wurde getestet, wobei ein Phänomen bekannt als "Geschwindigkeits-Genauigkeits-Kompromiss" verfolgt wurde, das besagt, dass Menschen weniger genaue Entscheidungen treffen, wenn sie unter Zeitdruck stehen. Die Ergebnisse zeigten, dass das RTNet-Modell dieses Phänomen nachahmt.

Die Forscher fanden auch heraus, dass sich RTNet in Bezug auf Entscheidungssicherheit wie Menschen verhält - Menschen fühlen sich sicherer, wenn ihre Entscheidungen korrekt sind, und RTNet zeigte ähnliche Eigenschaften, ohne dafür speziell trainiert zu werden.

Zukünftige Forschung
Das Team plant, seine Forschung durch das Training des Netzwerks auf vielfältigeren Datensätzen zu erweitern, um sein Potenzial zu testen. Es wird erwartet, dass dieses Modell auf andere neuronale Netzwerke angewendet wird, um die Rationalisierung von Entscheidungen ähnlich wie bei Menschen zu ermöglichen. Langfristig könnten Algorithmen dazu beitragen, die kognitive Belastung der tausenden Entscheidungen, die wir täglich treffen, zu verringern.

Darüber hinaus entwickelt die Forschung am MIT flexible Netzwerke, die als "flüssige" neuronale Netzwerke bekannt sind und sich an wechselnde Bedingungen anpassen und ein besseres Verständnis und die Diagnose von Netzwerkentscheidungen ermöglichen. Diese Netzwerke haben eine hohe Genauigkeit bei der Vorhersage zukünftiger Werte in verschiedenen Datensätzen gezeigt, einschließlich der Atmosphärenchemie und Verkehrsverläufen.

Forscher an der Stanford University untersuchen, wie neuronale Netzwerke bei komplexen Aufgaben wie der Vorhersage von Ergebnissen auf Basis von Belohnungshistorien und Risikobewertungen helfen können, was die Entscheidungsfindung in unbekannten Situationen verbessern könnte.

Schließlich ist das Ziel, Algorithmen zu entwickeln, die nicht nur unsere Entscheidungsfähigkeiten nachahmen, sondern sogar dazu beitragen könnten, die kognitive Belastung, die wir täglich tragen, zu verringern.

Quelle: Georgia Institute of Technology

ZNAJDŹ NOCLEG W POBLIŻU

Czas utworzenia: 21 lipca, 2024

AI Lara Teč

AI Lara Teč jest innowacyjną dziennikarką AI naszego globalnego portalu, specjalizującą się w pokrywaniu najnowszych trendów i osiągnięć w świecie nauki i technologii. Dzięki swojej ekspertyzie i analitycznemu podejściu, Lara dostarcza dogłębnych wglądów i wyjaśnień na najbardziej złożone tematy, czyniąc je dostępnymi i zrozumiałymi dla czytelników na całym świecie.

Ekspercka analiza i Jasne Wyjaśnienia Lara wykorzystuje swoją wiedzę, aby analizować i wyjaśniać skomplikowane zagadnienia naukowe i technologiczne, koncentrując się na ich znaczeniu i wpływie na codzienne życie. Niezależnie od tego, czy chodzi o najnowsze innowacje technologiczne, przełomy w badaniach, czy trendy w świecie cyfrowym, Lara oferuje gruntowne analizy i wyjaśnienia, podkreślając kluczowe aspekty i potencjalne implikacje dla czytelników.

Twój Przewodnik po Świecie Nauki i Technologii Artykuły Lary są zaprojektowane, aby prowadzić Cię przez złożony świat nauki i technologii, oferując jasne i precyzyjne wyjaśnienia. Jej umiejętność rozkładania skomplikowanych koncepcji na zrozumiałe części sprawia, że jej artykuły są niezastąpionym źródłem dla wszystkich, którzy chcą być na bieżąco z najnowszymi osiągnięciami naukowymi i technologicznymi.

Więcej niż AI - Twoje Okno na Przyszłość AI Lara Teč to nie tylko dziennikarka; jest oknem na przyszłość, oferując wgląd w nowe horyzonty nauki i technologii. Jej eksperckie przewodnictwo i dogłębna analiza pomagają czytelnikom zrozumieć i docenić złożoność oraz piękno innowacji, które kształtują nasz świat. Z Larą pozostaniesz poinformowany i zainspirowany najnowszymi osiągnięciami, jakie świat nauki i technologii ma do zaoferowania.

UWAGA DLA NASZYCH CZYTELNIKÓW
Karlobag.eu dostarcza wiadomości, analizy i informacje o globalnych wydarzeniach oraz tematach interesujących czytelników na całym świecie. Wszystkie opublikowane informacje służą wyłącznie celom informacyjnym.
Podkreślamy, że nie jesteśmy ekspertami w dziedzinie nauki, medycyny, finansów ani prawa. Dlatego przed podjęciem jakichkolwiek decyzji na podstawie informacji z naszego portalu zalecamy konsultację z wykwalifikowanymi ekspertami.
Karlobag.eu może zawierać linki do zewnętrznych stron trzecich, w tym linki afiliacyjne i treści sponsorowane. Jeśli kupisz produkt lub usługę za pośrednictwem tych linków, możemy otrzymać prowizję. Nie mamy kontroli nad treścią ani politykami tych stron i nie ponosimy odpowiedzialności za ich dokładność, dostępność ani za jakiekolwiek transakcje przeprowadzone za ich pośrednictwem.
Jeśli publikujemy informacje o wydarzeniach lub sprzedaży biletów, prosimy pamiętać, że nie sprzedajemy biletów ani bezpośrednio, ani poprzez pośredników. Nasz portal wyłącznie informuje czytelników o wydarzeniach i możliwościach zakupu biletów poprzez zewnętrzne platformy sprzedażowe. Łączymy czytelników z partnerami oferującymi usługi sprzedaży biletów, jednak nie gwarantujemy ich dostępności, cen ani warunków zakupu. Wszystkie informacje o biletach pochodzą od stron trzecich i mogą ulec zmianie bez wcześniejszego powiadomienia.
Wszystkie informacje na naszym portalu mogą ulec zmianie bez wcześniejszego powiadomienia. Korzystając z tego portalu, zgadzasz się czytać treści na własne ryzyko.