Postavke privatnosti

Developing neural networks that mimic human decisions: a new approach in artificial intelligence

Researchers at Georgia Tech have developed a neural network called RTNet that mimics human decisions, using Bayesian neural networks and evidence accumulation processes, making human-like decisions. The goal is to reduce the cognitive burden of everyday decision-making.

Developing neural networks that mimic human decisions: a new approach in artificial intelligence
Photo by: Domagoj Skledar/ arhiva (vlastita)

People make thousands of decisions every day, from simple ones, like crossing the street, to more complex ones, such as food choices. Researchers at Georgia Tech have developed a neural network that mimics human decisions, aiming to get closer to the human way of thinking and decision-making. This network, called RTNet, uses a Bayesian neural network (BNN) and an evidence accumulation process to make decisions in a way similar to humans.

Decoding Decisions
"Neural networks typically make decisions without expressing their level of confidence in those decisions," said Farshad Rafiei, a psychology doctor from Georgia Tech. "This is one of the key differences compared to humans." However, this new network can provide answers that include a degree of confidence, which is a crucial step toward human-like decision-making behavior.

Large language models (LLMs) often fabricate answers when they do not know the correct information. Unlike them, humans will admit ignorance in similar situations. Building networks that better mimic human reactions can reduce this type of error and improve the accuracy of responses.

Model Building
The team at Georgia Tech trained their network on handwritten digits from the well-known MNIST dataset. To test the accuracy of the model, they added noise to the images, making it harder to recognize the numbers. The model was then compared to the results of human subjects. Sixty students observed the same images and expressed their confidence in the decisions, and the results showed similarities in accuracy, reaction time, and confidence patterns between humans and the network.

The researchers used two key components: BNN, which uses probability for decision-making, and the evidence accumulation process, which tracks evidence for each choice. BNN produces different answers each time, and the accumulation process can favor one choice over another until enough evidence is gathered for a decision.

The speed of decision-making was also tested, following a phenomenon known as the "speed-accuracy trade-off," which dictates that people make less accurate decisions when under time pressure. The results showed that the RTNet model mimics this phenomenon.

The researchers also found that RTNet behaves like humans in terms of decision confidence - people feel more confident when their decisions are correct, and RTNet showed similar characteristics without special training for it.

Future Research
The team plans to expand their research by training the network on more diverse datasets to test its potential. It is expected that this model will be applied to other neural networks to enable rationalization of decisions similar to humans. In the long term, algorithms could help alleviate the cognitive load of the thousands of decisions we make every day.

In addition, research at MIT is developing flexible networks, known as "liquid" neural networks, which adapt to changing conditions and enable better understanding and diagnosis of network decisions. These networks have shown high accuracy in predicting future values in various datasets, including atmospheric chemistry and traffic patterns.

Researchers at Stanford are exploring how neural networks can help with complex tasks such as predicting outcomes based on reward history and risk assessment, which could improve decision-making in unknown situations.

Ultimately, the goal is to develop algorithms that not only mimic our decision-making abilities but could even help reduce the cognitive load we carry every day.

Source: Georgia Institute of Technology

Find accommodation nearby

Creation time: 21 July, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.