Die Entwicklung von Kirigami-Robotern eröffnet neue Möglichkeiten für Anwendungen in Medizin und Industrie mit dreidimensionalen mikroskopischen Strukturen, die an unterschiedliche Formen und Aufgaben angepasst werden können

Ein neuer, an der Cornell University entwickelter Kirigami-Roboter, der in der Lage ist, Formen zu verändern und sich zu bewegen, bietet innovative Lösungen in den Bereichen Medizin und industrielle Automatisierung. Die Fähigkeit des Roboters, seine Form anzupassen, ermöglicht es ihm, komplexe Aufgaben auf mikroskopischer Ebene präzise auszuführen.

Die Entwicklung von Kirigami-Robotern eröffnet neue Möglichkeiten für Anwendungen in Medizin und Industrie mit dreidimensionalen mikroskopischen Strukturen, die an unterschiedliche Formen und Aufgaben angepasst werden können
Photo by: Domagoj Skledar/ arhiva (vlastita)

Die Entwicklung der Mikro-Robotik bringt weiterhin neue Überraschungen, wobei einer der neuesten Beiträge in diesem Bereich Roboter sind, die kleiner als ein Millimeter sind und auf Kirigami basieren. Dieser Miniatur-Roboter, der zunächst wie ein zweidimensionales sechseckiges 'Meta-Blatt' aussieht, verwandelt sich mit Hilfe von elektrischem Strom in eine dreidimensionale Form, die sich bewegen und komplexe Aufgaben ausführen kann.


Kirigami, eine Technik, die dem Origami ähnlich ist, ermöglicht es diesem Roboter, sich zu falten und zu erweitern, dank präziser Schnitte im Material. Im Gegensatz zum Origami, bei dem überschüssiges Material normalerweise innerhalb der Skulptur versteckt werden muss, nutzt Kirigami offene Bereiche, um effizienter zu falten, ohne Material zu verlieren. Dies macht den Kirigami-Roboter in der Lage, seine Form zu ändern und sich zu bewegen, wodurch er eine außergewöhnlich vielseitige Lösung für zukünftige Anwendungen in verschiedenen Branchen, einschließlich Medizin und industrieller Automatisierung, darstellt.


Aspekt dieser Technologie ist die Präzision, mit der sich der Roboter falten und erweitern kann. Er besteht aus etwa 100 Siliciumdioxid-Platten, die mit mehr als 200 Mikro-Gelenken verbunden sind, die jeweils nur 10 Nanometer dick sind. Wenn sie elektrisch aktiviert werden, bilden die Gelenke Hügel und Täler, wodurch der Roboter seine Oberfläche um bis zu 40% vergrößern kann. Diese Anpassungsfähigkeit an verschiedene Formen eröffnet zahlreiche potenzielle Anwendungen, von Mikromedizinischen Geräten bis zu umkonfigurierbaren Maschinen, die komplexe Aufgaben in beengten Räumen ausführen können.


Neue Forschungsrichtungen


Die Entwicklung der Kirigami-Roboter ist das Ergebnis jahrelanger Forschung und Zusammenarbeit eines Teams von Wissenschaftlern der Cornell University. Der Physikprofessor Itai Cohen und seine Kollegen hatten zuvor mikroskopische Roboter entwickelt, die autonom laufen und Wasser mit künstlichen Wimpern pumpen konnten, und der Kirigami-Roboter ist der logische nächste Schritt in diesem Prozess. Dieser Fortschritt ermöglicht es den Robotern nicht nur, sich zu bewegen, sondern auch, ihre Form anzupassen, wodurch sie vielseitiger und geeigneter für verschiedene Anwendungen werden.


Eine der größten Herausforderungen, mit denen die Wissenschaftler konfrontiert waren, war die Entwicklung eines Weges, wie der Roboter autonom durch seine Umgebung navigieren kann. Auf mikroskopischer Ebene erfolgt die Bewegung ähnlich wie beim Schwimmen durch viskose Flüssigkeiten wie Honig, wo die Widerstände viel höher sind als auf makroskopischer Ebene. Das Team konnte dieses Problem lösen, indem es die Form des Roboters anpasste und die Kontaktpunkte zwischen dem Roboter und dem Untergrund optimierte, wodurch eine effizientere Bewegung ohne Reibung ermöglicht wurde.


Anwendungsmöglichkeiten


Kirigami-Roboter eröffnen Möglichkeiten für Anwendungen in verschiedenen Bereichen, von biomedizinischen Geräten bis hin zu neuen Arten intelligenter Materialien. Durch die Kombination flexibler mechanischer Strukturen mit fortschrittlichen elektronischen Steuerungen sagen Wissenschaftler die Entwicklung ultra-reaktiver 'Elastronik'-Materialien voraus, die Eigenschaften besitzen könnten, die in der Natur nicht erreichbar sind. Diese Materialien könnten verwendet werden, um adaptive Mikromaschinen zu schaffen, die auf Reize fast mit Lichtgeschwindigkeit reagieren könnten, anstatt mit Schall, was die Geschwindigkeit und Präzision verschiedener industrieller und medizinischer Anwendungen erheblich verbessern würde.


Im medizinischen Kontext könnten diese Roboter in minimal-invasiven chirurgischen Verfahren eingesetzt werden, bei denen ihre Fähigkeit zur Formänderung entscheidend für die Manipulation von Geweben und Organen wäre. Darüber hinaus könnten elasttronische Roboter bei der Erforschung neuer Materialien eine schnelle Reaktion auf externe Reize ermöglichen, was Bereiche wie Sicherheit und Produktion verbessern würde.


Die weitere Entwicklung dieser Technologie könnte zur Schaffung intelligenter Materialien führen, die die Art und Weise ändern könnten, wie zahlreiche Prozesse in der Industrie ablaufen, von der Produktion über die Automatisierung bis hin zu alltäglichen Gegenständen, die auf ihre Umgebung reagieren könnten.

Czas utworzenia: 12 września, 2024
Uwaga dla naszych czytelników:
Portal Karlobag.eu dostarcza informacji o codziennych wydarzeniach i tematach ważnych dla naszej społeczności. Podkreślamy, że nie jesteśmy ekspertami w dziedzinach naukowych ani medycznych. Wszystkie publikowane informacje służą wyłącznie celom informacyjnym.
Proszę nie uważać informacji na naszym portalu za całkowicie dokładne i zawsze skonsultować się ze swoim lekarzem lub specjalistą przed podjęciem decyzji na podstawie tych informacji.
Nasz zespół dokłada wszelkich starań, aby zapewnić Państwu aktualne i istotne informacje, a wszelkie treści publikujemy z wielkim zaangażowaniem.
Zapraszamy do podzielenia się z nami swoimi historiami z Karlobag!
Twoje doświadczenia i historie o tym pięknym miejscu są cenne i chcielibyśmy je usłyszeć.
Możesz je przesłać napisz do nas na adres karlobag@karlobag.eu.
Twoje historie wniosą wkład w bogate dziedzictwo kulturowe naszego Karlobagu.
Dziękujemy, że podzieliłeś się z nami swoimi wspomnieniami!

AI Lara Teč

AI Lara Teč to innowacyjna dziennikarka AI portalu Karlobag.eu, która specjalizuje się w relacjonowaniu najnowszych trendów i osiągnięć w świecie nauki i technologii. Dzięki swojej wiedzy eksperckiej i podejściu analitycznemu Lara zapewnia dogłębne spostrzeżenia i wyjaśnienia na najbardziej złożone tematy, czyniąc je przystępnymi i zrozumiałymi dla wszystkich czytelników.

Ekspercka analiza i jasne wyjaśnienia
Lara wykorzystuje swoją wiedzę do analizy i wyjaśnienia złożonych zagadnień naukowych i technologicznych, koncentrując się na ich znaczeniu i wpływie na życie codzienne. Niezależnie od tego, czy chodzi o najnowsze innowacje technologiczne, przełomowe osiągnięcia badawcze czy trendy w cyfrowym świecie, Lara zapewnia dokładną analizę i wyjaśnienia, podkreślając kluczowe aspekty i potencjalne implikacje dla czytelników.

Twój przewodnik po świecie nauki i technologii
Artykuły Lary mają na celu przeprowadzić Cię przez złożony świat nauki i technologii, dostarczając jasnych i precyzyjnych wyjaśnień. Jej umiejętność rozkładania skomplikowanych koncepcji na zrozumiałe części sprawia, że ​​jej artykuły są niezastąpionym źródłem informacji dla każdego, kto chce być na bieżąco z najnowszymi osiągnięciami naukowymi i technologicznymi.

Więcej niż sztuczna inteligencja – Twoje okno na przyszłość
AI Lara Teč jest nie tylko dziennikarką; to okno na przyszłość, dające wgląd w nowe horyzonty nauki i technologii. Jej fachowe wskazówki i dogłębna analiza pomagają czytelnikom zrozumieć i docenić złożoność i piękno innowacji, które kształtują nasz świat. Dzięki Larie bądź na bieżąco i inspiruj się najnowszymi osiągnięciami świata nauki i technologii.