Detecting deepfakes with eye analysis: a new method from Hull University to identify fake images

New research from Hull University shows how deepfakes can be recognized by analyzing reflections in the eyes, using astronomy methods. This innovative technique provides new hope in the fight against false images.

Detecting deepfakes with eye analysis: a new method from Hull University to identify fake images
Photo by: Domagoj Skledar/ arhiva (vlastita)

In an era when the creation of images using artificial intelligence (AI) has become available to the general public, recognizing fake images, especially deepfakes, is becoming increasingly significant. New research, presented at the National Astronomy Meeting of the Royal Astronomical Society in Hull, reveals that AI-generated deepfakes can be identified by analyzing the eyes in a way similar to studying images of galaxies.

The foundation of the work, created by master's degree holder Adejumoke Owolabi at the University of Hull, lies in the reflections in people's eyes. If the reflections are consistent, the image is likely real. If they are not, it is most likely a deepfake.

"Reflections in the eyes are consistent in a real person but inaccurate in a fake person," highlighted Kevin Pimbblet, professor of astrophysics and director of the Centre of Excellence for Data Science, Artificial Intelligence, and Modelling at the University of Hull.

Researchers analyzed light reflections in the eyes of people in real and AI-generated images. They then used methods commonly employed in astronomy to quantify reflections and check for consistency between the left and right eye reflections.

Fake images often lack consistency in reflections between each eye, whereas real images generally show the same reflections in both eyes.

"To measure the shape of galaxies, we analyze whether they are centrally compact, symmetrical, and how smooth they are. We analyze the distribution of light," said Professor Pimbblet.

"We automatically detect reflections and conduct their morphological features through CAS [concentration, asymmetry, smoothness] and Gini indices to compare the similarity between left and right eyes.

The results show that deepfakes have certain differences between the pair of eyes."

The Gini coefficient is usually used to measure how light in a galaxy image is distributed among the pixels. This measurement is performed by ordering the pixels making up the galaxy image in ascending order by flux and then comparing it to what would be expected from a perfectly even flux distribution.

A Gini value of 0 indicates a galaxy where light is evenly distributed across all the pixels in the image, while a Gini value of 1 indicates a galaxy with all the light concentrated in one pixel.

The team also tested CAS parameters, a tool originally developed by astronomers to measure the light distribution of galaxies to determine their morphology, but found that they were not successful predictors of fake eyes.

"It is important to note that this is not a magic solution for recognizing fake images," added Professor Pimbblet. "There are false positive and false negative results; it will not detect everything. But this method gives us a foundation, a plan of attack, in the race to detect deepfakes."

This work represents a significant step forward in developing technologies for recognizing fake images. As deepfake technology advances, it becomes crucial to have reliable methods for distinguishing real from fake images. Further research and refinement of these methods are expected to further improve the accuracy of deepfake recognition, thereby providing additional protection against potential abuses.

The development of deepfake detection technologies has broad applications, including security, journalism, and justice. In a world where visual information is crucial, the ability to recognize fake images becomes an indispensable skill. These results emphasize the need for an interdisciplinary approach, combining knowledge from astronomy, artificial intelligence, and forensics to effectively counter the challenges posed by the deepfake era.

Source: Royal Astronomical Society

Greška: Koordinate nisu pronađene za mjesto:
Erstellungszeitpunkt: 29 Juli, 2024

AI Lara Teč

AI Lara Teč ist eine innovative KI-Journalistin unseres globalen Portals, spezialisiert auf die Berichterstattung über die neuesten Trends und Errungenschaften in der Welt der Wissenschaft und Technologie. Mit ihrem Fachwissen und analytischen Ansatz bietet Lara tiefgehende Einblicke und Erklärungen zu den komplexesten Themen, wodurch sie für Leser weltweit zugänglich und verständlich werden.

Fachkundige Analyse und Klare Erklärungen Lara nutzt ihre Expertise, um komplexe wissenschaftliche und technologische Themen zu analysieren und zu erklären, wobei sie sich auf deren Bedeutung und Einfluss auf das tägliche Leben konzentriert. Ob es sich um die neuesten technologischen Innovationen, Durchbrüche in der Forschung oder Trends in der digitalen Welt handelt, Lara bietet gründliche Analysen und Erklärungen, die die wichtigsten Aspekte und potenziellen Auswirkungen für die Leser hervorheben.

Ihr Führer durch die Welt der Wissenschaft und Technologie Larastiche Artikel sind darauf ausgelegt, Sie durch die komplexe Welt der Wissenschaft und Technologie zu führen und dabei klare und präzise Erklärungen zu bieten. Ihre Fähigkeit, komplexe Konzepte in verständliche Teile zu zerlegen, macht ihre Artikel zu einer unverzichtbaren Ressource für alle, die über die neuesten wissenschaftlichen und technologischen Fortschritte informiert bleiben möchten.

Mehr als KI - Ihr Fenster in die Zukunft AI Lara Teč ist nicht nur eine Journalistin; sie ist ein Fenster in die Zukunft und bietet Einblicke in neue Horizonte der Wissenschaft und Technologie. Ihre fachkundige Führung und tiefgehende Analyse helfen den Lesern, die Komplexität und Schönheit der Innovationen, die unsere Welt gestalten, zu verstehen und zu schätzen. Mit Lara bleiben Sie über die neuesten Errungenschaften informiert und inspiriert, die die Welt der Wissenschaft und Technologie zu bieten hat.

HINWEIS FÜR UNSERE LESER
Karlobag.eu bietet Nachrichten, Analysen und Informationen zu globalen Ereignissen und Themen, die für Leser weltweit von Interesse sind. Alle veröffentlichten Informationen dienen ausschließlich zu Informationszwecken.
Wir betonen, dass wir keine Experten in den Bereichen Wissenschaft, Medizin, Finanzen oder Recht sind. Daher empfehlen wir, vor der Entscheidungsfindung auf Basis der Informationen unseres Portals, sich mit qualifizierten Experten zu beraten.
Karlobag.eu kann Links zu externen Drittanbieterseiten enthalten, einschließlich Affiliate-Links und gesponserten Inhalten. Wenn Sie über diese Links ein Produkt oder eine Dienstleistung kaufen, können wir eine Provision erhalten. Wir haben keine Kontrolle über die Inhalte oder Richtlinien dieser Seiten und übernehmen keine Verantwortung für deren Genauigkeit, Verfügbarkeit oder für Transaktionen, die Sie über diese Seiten tätigen.
Wenn wir Informationen über Veranstaltungen oder Ticketverkäufe veröffentlichen, beachten Sie bitte, dass wir weder direkt noch über Vermittler Tickets verkaufen. Unser Portal informiert ausschließlich über Veranstaltungen und Kaufmöglichkeiten über externe Verkaufsplattformen. Wir verbinden Leser mit Partnern, die Ticketverkaufsdienste anbieten, garantieren jedoch nicht deren Verfügbarkeit, Preise oder Kaufbedingungen. Alle Ticketinformationen werden von Dritten bezogen und können ohne vorherige Ankündigung Änderungen unterliegen. Wir empfehlen, die Verkaufsbedingungen beim gewählten Partner vor einem Kauf sorgfältig zu überprüfen, da das Portal Karlobag.eu keine Verantwortung für Transaktionen oder Verkaufsbedingungen von Tickets übernimmt.
Alle Informationen auf unserem Portal können ohne vorherige Ankündigung geändert werden. Durch die Nutzung dieses Portals stimmen Sie zu, dass Sie die Inhalte auf eigenes Risiko lesen.