Detecting deepfakes with eye analysis: a new method from Hull University to identify fake images

New research from Hull University shows how deepfakes can be recognized by analyzing reflections in the eyes, using astronomy methods. This innovative technique provides new hope in the fight against false images.

Detecting deepfakes with eye analysis: a new method from Hull University to identify fake images
Photo by: Domagoj Skledar/ arhiva (vlastita)

In an era when the creation of images using artificial intelligence (AI) has become available to the general public, recognizing fake images, especially deepfakes, is becoming increasingly significant. New research, presented at the National Astronomy Meeting of the Royal Astronomical Society in Hull, reveals that AI-generated deepfakes can be identified by analyzing the eyes in a way similar to studying images of galaxies.

The foundation of the work, created by master's degree holder Adejumoke Owolabi at the University of Hull, lies in the reflections in people's eyes. If the reflections are consistent, the image is likely real. If they are not, it is most likely a deepfake.

"Reflections in the eyes are consistent in a real person but inaccurate in a fake person," highlighted Kevin Pimbblet, professor of astrophysics and director of the Centre of Excellence for Data Science, Artificial Intelligence, and Modelling at the University of Hull.

Researchers analyzed light reflections in the eyes of people in real and AI-generated images. They then used methods commonly employed in astronomy to quantify reflections and check for consistency between the left and right eye reflections.

Fake images often lack consistency in reflections between each eye, whereas real images generally show the same reflections in both eyes.

"To measure the shape of galaxies, we analyze whether they are centrally compact, symmetrical, and how smooth they are. We analyze the distribution of light," said Professor Pimbblet.

"We automatically detect reflections and conduct their morphological features through CAS [concentration, asymmetry, smoothness] and Gini indices to compare the similarity between left and right eyes.

The results show that deepfakes have certain differences between the pair of eyes."

The Gini coefficient is usually used to measure how light in a galaxy image is distributed among the pixels. This measurement is performed by ordering the pixels making up the galaxy image in ascending order by flux and then comparing it to what would be expected from a perfectly even flux distribution.

A Gini value of 0 indicates a galaxy where light is evenly distributed across all the pixels in the image, while a Gini value of 1 indicates a galaxy with all the light concentrated in one pixel.

The team also tested CAS parameters, a tool originally developed by astronomers to measure the light distribution of galaxies to determine their morphology, but found that they were not successful predictors of fake eyes.

"It is important to note that this is not a magic solution for recognizing fake images," added Professor Pimbblet. "There are false positive and false negative results; it will not detect everything. But this method gives us a foundation, a plan of attack, in the race to detect deepfakes."

This work represents a significant step forward in developing technologies for recognizing fake images. As deepfake technology advances, it becomes crucial to have reliable methods for distinguishing real from fake images. Further research and refinement of these methods are expected to further improve the accuracy of deepfake recognition, thereby providing additional protection against potential abuses.

The development of deepfake detection technologies has broad applications, including security, journalism, and justice. In a world where visual information is crucial, the ability to recognize fake images becomes an indispensable skill. These results emphasize the need for an interdisciplinary approach, combining knowledge from astronomy, artificial intelligence, and forensics to effectively counter the challenges posed by the deepfake era.

Source: Royal Astronomical Society

Greška: Koordinate nisu pronađene za mjesto:
Hora de creación: 29 julio, 2024

AI Lara Teč

AI Lara Teč es una periodista de IA innovadora de nuestro portal global, especializada en cubrir las últimas tendencias y logros en el mundo de la ciencia y la tecnología. Con su conocimiento experto y enfoque analítico, Lara proporciona profundos insights y explicaciones sobre los temas más complejos, haciéndolos accesibles y comprensibles para todos los lectores en todo el mundo.

Análisis Experto y Explicaciones Claras Lara utiliza su experiencia para analizar y explicar temas científicos y tecnológicos complejos, enfocándose en su importancia e impacto en la vida cotidiana. Ya sea sobre las últimas innovaciones tecnológicas, avances en investigaciones o tendencias en el mundo digital, Lara ofrece análisis exhaustivos y explicaciones, destacando aspectos clave y posibles implicaciones para los lectores.

Tu Guía a Través del Mundo de la Ciencia y la Tecnología Los artículos de Lara están diseñados para guiarte a través del complejo mundo de la ciencia y la tecnología, proporcionando explicaciones claras y precisas. Su capacidad para desglosar conceptos complejos en partes comprensibles hace que sus artículos sean un recurso indispensable para todos aquellos que desean mantenerse al día con los últimos avances científicos y tecnológicos.

Más que una IA - Tu Ventana al Futuro AI Lara Teč no es solo una periodista; es una ventana al futuro, ofreciendo insights sobre nuevos horizontes en la ciencia y la tecnología. Su guía experta y análisis profundo ayudan a los lectores a comprender y apreciar la complejidad y belleza de las innovaciones que dan forma a nuestro mundo. Con Lara, mantente informado e inspirado por los últimos logros que el mundo de la ciencia y la tecnología tiene para ofrecer.

AVISO PARA NUESTROS LECTORES
Karlobag.eu ofrece noticias, análisis e información sobre eventos globales y temas de interés para lectores de todo el mundo. Toda la información publicada se ofrece únicamente con fines informativos.
Destacamos que no somos expertos en los ámbitos científico, médico, financiero ni legal. Por lo tanto, antes de tomar decisiones basadas en la información de nuestro portal, le recomendamos que consulte a expertos cualificados.
Karlobag.eu puede contener enlaces a sitios externos de terceros, incluidos enlaces de afiliados y contenidos patrocinados. Si compra un producto o servicio a través de estos enlaces, podemos recibir una comisión. No tenemos control sobre el contenido o las políticas de dichos sitios y no asumimos responsabilidad alguna por su exactitud, disponibilidad o por cualquier transacción realizada a través de ellos.
Si publicamos información sobre eventos o venta de entradas, tenga en cuenta que no vendemos entradas ni directamente ni a través de intermediarios. Nuestro portal informa únicamente a los lectores sobre eventos y oportunidades de compra a través de plataformas de venta externas. Conectamos a los lectores con socios que ofrecen servicios de venta de entradas, pero no garantizamos su disponibilidad, precios o condiciones de compra. Toda la información sobre las entradas es obtenida de terceros y puede estar sujeta a cambios sin previo aviso. Le recomendamos que verifique detenidamente las condiciones de venta con el socio seleccionado antes de realizar cualquier compra.
Toda la información en nuestro portal está sujeta a cambios sin previo aviso. Al utilizar este portal, usted acepta leer el contenido bajo su propio riesgo.