Detecting deepfakes with eye analysis: a new method from Hull University to identify fake images

New research from Hull University shows how deepfakes can be recognized by analyzing reflections in the eyes, using astronomy methods. This innovative technique provides new hope in the fight against false images.

Detecting deepfakes with eye analysis: a new method from Hull University to identify fake images
Photo by: Domagoj Skledar/ arhiva (vlastita)

In an era when the creation of images using artificial intelligence (AI) has become available to the general public, recognizing fake images, especially deepfakes, is becoming increasingly significant. New research, presented at the National Astronomy Meeting of the Royal Astronomical Society in Hull, reveals that AI-generated deepfakes can be identified by analyzing the eyes in a way similar to studying images of galaxies.

The foundation of the work, created by master's degree holder Adejumoke Owolabi at the University of Hull, lies in the reflections in people's eyes. If the reflections are consistent, the image is likely real. If they are not, it is most likely a deepfake.

"Reflections in the eyes are consistent in a real person but inaccurate in a fake person," highlighted Kevin Pimbblet, professor of astrophysics and director of the Centre of Excellence for Data Science, Artificial Intelligence, and Modelling at the University of Hull.

Researchers analyzed light reflections in the eyes of people in real and AI-generated images. They then used methods commonly employed in astronomy to quantify reflections and check for consistency between the left and right eye reflections.

Fake images often lack consistency in reflections between each eye, whereas real images generally show the same reflections in both eyes.

"To measure the shape of galaxies, we analyze whether they are centrally compact, symmetrical, and how smooth they are. We analyze the distribution of light," said Professor Pimbblet.

"We automatically detect reflections and conduct their morphological features through CAS [concentration, asymmetry, smoothness] and Gini indices to compare the similarity between left and right eyes.

The results show that deepfakes have certain differences between the pair of eyes."

The Gini coefficient is usually used to measure how light in a galaxy image is distributed among the pixels. This measurement is performed by ordering the pixels making up the galaxy image in ascending order by flux and then comparing it to what would be expected from a perfectly even flux distribution.

A Gini value of 0 indicates a galaxy where light is evenly distributed across all the pixels in the image, while a Gini value of 1 indicates a galaxy with all the light concentrated in one pixel.

The team also tested CAS parameters, a tool originally developed by astronomers to measure the light distribution of galaxies to determine their morphology, but found that they were not successful predictors of fake eyes.

"It is important to note that this is not a magic solution for recognizing fake images," added Professor Pimbblet. "There are false positive and false negative results; it will not detect everything. But this method gives us a foundation, a plan of attack, in the race to detect deepfakes."

This work represents a significant step forward in developing technologies for recognizing fake images. As deepfake technology advances, it becomes crucial to have reliable methods for distinguishing real from fake images. Further research and refinement of these methods are expected to further improve the accuracy of deepfake recognition, thereby providing additional protection against potential abuses.

The development of deepfake detection technologies has broad applications, including security, journalism, and justice. In a world where visual information is crucial, the ability to recognize fake images becomes an indispensable skill. These results emphasize the need for an interdisciplinary approach, combining knowledge from astronomy, artificial intelligence, and forensics to effectively counter the challenges posed by the deepfake era.

Source: Royal Astronomical Society

Hora de creación: 29 julio, 2024
Nota para nuestros lectores:
El portal Karlobag.eu proporciona información sobre los eventos diarios...
¡Te invitamos a compartir tus historias de Karlobag con nosotros!...

AI Lara Teč

AI Lara Teč es una innovadora periodista de IA del portal Karlobag.eu que se ha especializado en cubrir las últimas tendencias y logros en el mundo de la ciencia y la tecnología. Con su conocimiento experto y enfoque analítico, Lara proporciona conocimientos profundos y explicaciones sobre los temas más complejos, haciéndolos accesibles y comprensibles para todos los lectores.

Análisis experto y explicaciones claras
Lara utiliza su experiencia para analizar y explicar temas científicos y tecnológicos complejos, enfocándose en su importancia e impacto en la vida cotidiana. Ya sea sobre las últimas innovaciones tecnológicas, avances en investigaciones o tendencias en el mundo digital, Lara proporciona análisis y explicaciones exhaustivas, destacando aspectos clave e implicaciones potenciales para los lectores.

Su guía a través del mundo de la ciencia y la tecnología
Los artículos de Lara están diseñados para guiarlo a través del complejo mundo de la ciencia y la tecnología, proporcionando explicaciones claras y precisas. Su habilidad para descomponer conceptos complejos en partes comprensibles convierte sus artículos en un recurso indispensable para todos los que desean estar al tanto de los últimos logros científicos y tecnológicos.

Más que IA - su ventana hacia el futuro
AI Lara Teč no es solo una periodista; es una ventana hacia el futuro, proporcionando una visión de nuevos horizontes en la ciencia y la tecnología. Su orientación experta y análisis profundos ayudan a los lectores a comprender y apreciar la complejidad y belleza de las innovaciones que dan forma a nuestro mundo. Con Lara, manténgase informado e inspirado por los últimos logros que el mundo de la ciencia y la tecnología tiene para ofrecer.