Postavke privatnosti

New mit receiver blocks wireless communication interference and improves performance in 5G and 6G systems

Mit researchers have developed an innovative MIMO receiver architecture that effectively blocks interference in wireless signals, enabling better performance and greater energy efficiency in devices such as 5G and 6G mobile phones. This technology uses advanced phase shifts to eliminate interference earlier, thus significantly improving signal quality.

New mit receiver blocks wireless communication interference and improves performance in 5G and 6G systems
Photo by: Domagoj Skledar/ arhiva (vlastita)

Today's fast wireless communication, including 5G mobile phones and sensors for autonomous vehicles, increasingly clogs radio frequencies. This makes blocking interference that can disrupt device operation more important and challenging.

With these and other applications in mind, researchers at MIT have demonstrated a new architecture for a millimeter-wave multiple input and output (MIMO) wireless receiver that can handle stronger spatial interference than previous designs. MIMO systems have multiple antennas that enable sending and receiving signals from different directions. Their wireless receiver detects and blocks spatial interference as early as possible, before unwanted signals are amplified, which improves performance.

The key to this MIMO receiver architecture is a special circuit that can target and cancel unwanted signals, known as a non-reciprocal phase shifter. By designing a new phase shifter structure that is reconfigurable, low-power, and compact, the researchers demonstrate how it can be used to cancel interference earlier in the receiver chain.

Their receiver can block up to four times more interference than some similar devices. Additionally, the interference-blocking components can be turned on and off as needed to save energy.

In a mobile phone, such a receiver could help reduce signal quality issues that can lead to slow and choppy Zoom calls or video streaming.

Blocking Interference
Digital MIMO systems have both an analog and a digital part. The analog part uses antennas to receive signals, which are amplified, converted, and passed through an analog-to-digital converter before being processed in the device's digital domain. In this case, digital beamforming is required to capture the desired signal.

But if a strong interfering signal from another direction hits the receiver at the same time as the desired signal, it can saturate the amplifier so that the desired signal is overwhelmed. Digital MIMOs can filter unwanted signals, but this filtering happens later in the receiver chain. If interference is amplified along with the desired signal, it is harder to filter out later.

“The output of the initial low-noise amplifier is the first place you can perform this filtering with minimal penalty, so that's exactly what we're doing with our approach,” says Reiskarimian.

The researchers built and installed four non-reciprocal phase shifters immediately at the output of the first amplifier in each receiver chain, all connected to the same node. These phase shifters can pass the signal in both directions and sense the angle of the incoming interfering signal. The devices can adjust their phase until they cancel out the interference.

The phase of these devices can be precisely tuned so they can sense and cancel the unwanted signal before it passes to the rest of the receiver, blocking interference before it affects any other part of the receiver. Additionally, the phase shifters can track signals to continue blocking interference if they change location.

“If you start losing connection or your signal quality drops, you can turn this on and mitigate those interferences on the fly. Since our approach is parallel, you can turn it on and off with minimal impact on the performance of the receiver itself,” adds Reiskarimian.

Compact Device
In addition to making their new phase shifter architecture adjustable, the researchers designed them to take up less space on the chip and consume less power than typical non-reciprocal phase shifters.

After the researchers conducted an analysis that showed their idea would work, their biggest challenge was translating the theory into a circuit that achieved their performance goals. At the same time, the receiver had to meet strict size constraints and a tight energy budget, otherwise, it would not be useful in real devices.

In the end, the team demonstrated a compact MIMO architecture on a 3.2-square-millimeter chip that could block signals that were up to four times stronger than those other devices could handle. Simpler than typical designs, their phase shifter architecture is also more energy-efficient.

In the future, the researchers want to scale their device to larger systems as well as enable it to operate in new frequency ranges used by 6G wireless devices. These frequency ranges are prone to strong interference from satellites. Additionally, they would like to adapt non-reciprocal phase shifters for other applications.

This research was supported, in part, by the MIT Center for Integrated Circuits and Systems.

Source: Massachusetts Institute of Technology

Unterkünfte in der Nähe finden

Erstellungszeitpunkt: 02 Juli, 2024

Redaktion für Wissenschaft und Technologie

Unsere Redaktion für Wissenschaft und Technologie ist aus einer langjährigen Leidenschaft für das Erforschen, Interpretieren und Vermitteln komplexer Themen an alltägliche Leser entstanden. Bei uns schreiben Mitarbeiter und freiwillige Autoren, die seit Jahrzehnten die Entwicklungen in Wissenschaft und technologischer Innovation verfolgen – von Laborentdeckungen bis zu Lösungen, die den Alltag verändern. Obwohl wir in der Mehrzahl schreiben, steht hinter jedem Text eine echte Person mit umfangreicher redaktioneller und journalistischer Erfahrung sowie großem Respekt gegenüber Fakten und überprüfbaren Informationen.

Unsere Redaktion arbeitet aus der Überzeugung heraus, dass Wissenschaft am stärksten ist, wenn sie für alle zugänglich ist. Deshalb streben wir nach Klarheit, Präzision und Verständlichkeit, ohne jene Vereinfachungen, die die Qualität des Inhalts mindern würden. Oft verbringen wir Stunden mit dem Studium von Forschungsarbeiten, technischen Dokumenten und Fachquellen, um jedes Thema so zu präsentieren, dass es den Leser interessiert und nicht belastet. In jedem Text versuchen wir, wissenschaftliche Erkenntnisse mit dem realen Leben zu verbinden und zu zeigen, wie Ideen aus Forschungszentren, Universitäten und Technologielaboren die Welt um uns herum gestalten.

Unsere langjährige journalistische Erfahrung ermöglicht uns zu erkennen, was für den Leser wirklich wichtig ist – ob es um Fortschritte in der künstlichen Intelligenz geht, medizinische Entdeckungen, Energielösungen, Weltraummissionen oder Geräte, die unseren Alltag erreichen, bevor wir uns überhaupt ihre Möglichkeiten vorstellen können. Unser Blick auf Technologie ist nicht nur technisch; uns interessieren auch die menschlichen Geschichten hinter großen Entwicklungen – Forscher, die jahrelang an Projekten arbeiten, Ingenieure, die Ideen in funktionierende Systeme verwandeln, und Visionäre, die die Grenzen des Möglichen erweitern.

Auch ein starkes Verantwortungsgefühl leitet uns bei der Arbeit. Wir möchten, dass der Leser Vertrauen in die von uns gelieferten Informationen haben kann, daher überprüfen wir Quellen, vergleichen Daten und zögern mit der Veröffentlichung, wenn etwas nicht ganz klar ist. Vertrauen entsteht langsamer, als Nachrichten geschrieben werden, doch wir glauben, dass nur solch ein Journalismus langfristig wertvoll ist.

Für uns ist Technologie mehr als Geräte, und Wissenschaft mehr als Theorie. Es sind Bereiche, die Fortschritt antreiben, die Gesellschaft prägen und neue Möglichkeiten eröffnen für alle, die verstehen wollen, wie die Welt heute funktioniert und wohin sie morgen geht. Deshalb gehen wir jedes Thema mit Ernsthaftigkeit, aber auch mit Neugier an – denn gerade Neugier öffnet die Tür zu den besten Texten.

Unsere Mission ist es, den Lesern eine Welt näherzubringen, die sich schneller denn je verändert, im Bewusstsein, dass qualitativ hochwertiger Journalismus eine Brücke sein kann zwischen Experten, Innovatoren und all jenen, die verstehen wollen, was hinter den Schlagzeilen geschieht. Darin sehen wir unsere wahre Aufgabe: das Komplexe verständlich zu machen, das Entfernte nah und das Unbekannte inspirierend.

HINWEIS FÜR UNSERE LESER
Karlobag.eu bietet Nachrichten, Analysen und Informationen zu globalen Ereignissen und Themen, die für Leser weltweit von Interesse sind. Alle veröffentlichten Informationen dienen ausschließlich zu Informationszwecken.
Wir betonen, dass wir keine Experten in den Bereichen Wissenschaft, Medizin, Finanzen oder Recht sind. Daher empfehlen wir, vor der Entscheidungsfindung auf Basis der Informationen unseres Portals, sich mit qualifizierten Experten zu beraten.
Karlobag.eu kann Links zu externen Drittanbieterseiten enthalten, einschließlich Affiliate-Links und gesponserten Inhalten. Wenn Sie über diese Links ein Produkt oder eine Dienstleistung kaufen, können wir eine Provision erhalten. Wir haben keine Kontrolle über die Inhalte oder Richtlinien dieser Seiten und übernehmen keine Verantwortung für deren Genauigkeit, Verfügbarkeit oder für Transaktionen, die Sie über diese Seiten tätigen.
Wenn wir Informationen über Veranstaltungen oder Ticketverkäufe veröffentlichen, beachten Sie bitte, dass wir weder direkt noch über Vermittler Tickets verkaufen. Unser Portal informiert ausschließlich über Veranstaltungen und Kaufmöglichkeiten über externe Verkaufsplattformen. Wir verbinden Leser mit Partnern, die Ticketverkaufsdienste anbieten, garantieren jedoch nicht deren Verfügbarkeit, Preise oder Kaufbedingungen. Alle Ticketinformationen werden von Dritten bezogen und können ohne vorherige Ankündigung Änderungen unterliegen. Wir empfehlen, die Verkaufsbedingungen beim gewählten Partner vor einem Kauf sorgfältig zu überprüfen, da das Portal Karlobag.eu keine Verantwortung für Transaktionen oder Verkaufsbedingungen von Tickets übernimmt.
Alle Informationen auf unserem Portal können ohne vorherige Ankündigung geändert werden. Durch die Nutzung dieses Portals stimmen Sie zu, dass Sie die Inhalte auf eigenes Risiko lesen.