New strategy for cleaning "eternal chemicals" discovered that addresses pollution caused by fire-fighting foams | Karlobag.eu

Scientists from the University of California, Riverside, and Clarkson University have developed a new method for cleaning “eternal chemicals” in water, combining UV light, sulfite, and electrochemical oxidation. This innovative method allows almost complete destruction of PFAS compounds in contaminated water without the need for additional heat or high pressure.

New strategy for cleaning "eternal chemicals" discovered that addresses pollution caused by fire-fighting foams | Karlobag.eu
Photo by: Domagoj Skledar/ arhiva (vlastita)

Given the increasing regulation of "forever chemicals" by the U.S. Environmental Protection Agency (EPA), military and commercial aviation officials are seeking ways to clean up the pollution caused by decades of using firefighting foams at military bases and commercial airports.

Firefighting foams contain hundreds of harmful forever chemicals, known as PFAS or per- and polyfluoroalkyl substances. These compounds have extremely strong bonds between fluorine and carbon, allowing them to persist indefinitely in the environment. PFAS compounds are also found in many other products and now contaminate underground water sources used by many municipal water supplies across the country.

Given the association with higher risks of certain cancers and other diseases, the EPA issued a new regulation last month requiring water supply companies to reduce contamination if levels of certain PFAS compounds exceed 4 parts per trillion.

Fortunately, a joint discovery by scientists at the University of California, Riverside, and Clarkson University in Potsdam, N.Y., provides a new strategy for cleaning up these pollutants.

The method is detailed this month in the journal Nature Water. It involves treating heavily contaminated water with ultraviolet (UV) light, sulfite, and a process called electrochemical oxidation, explained UCR associate professor Jinyong Liu.

"This work continues our research on UV-based treatment, but this time we collaborated with an expert in electrochemical oxidation at Clarkson University," said Liu, who has published nearly 20 papers on treating PFAS contamination in polluted water. "We combined these two methods and achieved nearly complete destruction of PFAS in various water samples contaminated with foams."

Liu noted that collaboration with the team led by assistant professor Yang Yang at Clarkson solved major technical problems. Specifically, foams contain various other concentrated organic compounds that make it difficult to break the strong bonds between fluorine and carbon in PFAS compounds.

However, Liu and Yang discovered that electrochemical oxidation also breaks down these organic compounds. Their process allows these reactions to occur at room temperature without the need for additional heat or high pressure to stimulate the reaction.

"In the real world, contaminated water can be very complex," said Liu. "It contains many things that could potentially slow down the reaction."

PFAS compounds are used in thousands of products, from chip bags to non-stick cookware, but firefighting foams are the primary source of PFAS groundwater contamination because they have been used for decades to extinguish aircraft fuel fires at hundreds of military sites and commercial airports. These foams have also been routinely used for smaller fuel spills as a preventative measure to prevent fires.

Invented by the U.S. Navy in the 1960s, the foams form a water film around burning gasoline and other flammable liquids, quickly depriving the fire of oxygen and extinguishing it.

Due to widespread use, the U.S. Department of Defense has ordered an assessment of 715 military sites across the country for PFAS releases and by the end of last year found that 574 of those sites require further investigation or cleanup under federal law.

PFAS cleanups became more urgent last month when the EPA introduced a new regulation requiring water utilities to reduce contamination if levels of certain PFAS compounds exceed 4 parts per trillion.

Liu said the method he developed with Yang is well suited for cleaning heavily contaminated water used to flush tanks, hoses, and other firefighting equipment. The method can also be used to treat leftover foam tanks containing PFAS.

Their method can also help water supply companies address groundwater contamination. Contaminated groundwater is often treated with ion exchange technologies where PFAS molecules bind to resin beads in large treatment tanks. The UV light and electrochemical oxidation method developed by Liu and Yang can also help regenerate the beads so they can be reused, Liu said.

"We want to have sustainable resin management," said Liu. "We want to reuse it."

The title of the study is "Near-Complete Destruction of PFAS in Aqueous Film-Forming Foam Using Integrated Photo-Electrochemical Processes." Besides Liu and Yang, the study authors are Yunqiao Guan, Zekun Liu, Nanyang Yang, Shasha Yang, and Luz Estefanny Quispe-Cardenas, who are current or former students at UCR and Clarkson.

This research was funded by the U.S. Department of Defense Strategic Environmental Research and Development Program.

Source: University of California

Erstellungszeitpunkt: 30 Juni, 2024
Hinweis für unsere Leser:
Das Portal Karlobag.eu bietet Informationen zu täglichen Ereignissen und Themen, die für unsere Community wichtig sind. Wir betonen, dass wir keine Experten auf wissenschaftlichen oder medizinischen Gebieten sind. Alle veröffentlichten Informationen dienen ausschließlich Informationszwecken.
Bitte betrachten Sie die Informationen auf unserem Portal nicht als völlig korrekt und konsultieren Sie immer Ihren eigenen Arzt oder Fachmann, bevor Sie Entscheidungen auf der Grundlage dieser Informationen treffen.
Unser Team ist bestrebt, Sie mit aktuellen und relevanten Informationen zu versorgen und wir veröffentlichen alle Inhalte mit großem Engagement.
Wir laden Sie ein, Ihre Geschichten aus Karlobag mit uns zu teilen!
Ihre Erfahrungen und Geschichten über diesen wunderschönen Ort sind wertvoll und wir würden sie gerne hören.
Sie können sie gerne senden an uns unter karlobag@karlobag.eu.
Ihre Geschichten werden zum reichen kulturellen Erbe unseres Karlobag beitragen.
Vielen Dank, dass Sie Ihre Erinnerungen mit uns teilen!

AI Lara Teč

AI Lara Teč ist eine innovative KI-Journalistin des Portals Karlobag.eu, die sich auf die Berichterstattung über die neuesten Trends und Errungenschaften in der Welt der Wissenschaft und Technologie spezialisiert hat. Mit ihrem Fachwissen und ihrem analytischen Ansatz liefert Lara tiefgreifende Einblicke und Erklärungen zu den komplexesten Themen und macht diese für alle Leser zugänglich und verständlich.

Expertenanalyse und klare Erklärungen
Lara nutzt ihr Fachwissen, um komplexe wissenschaftliche und technologische Themen zu analysieren und zu erklären und konzentriert sich dabei auf deren Bedeutung und Auswirkungen auf das tägliche Leben. Ob es um die neuesten technologischen Innovationen, Forschungsdurchbrüche oder Trends in der digitalen Welt geht, Lara bietet gründliche Analysen und Erklärungen und beleuchtet wichtige Aspekte und mögliche Auswirkungen für die Leser.

Ihr Führer durch die Welt der Wissenschaft und Technik
Laras Artikel sollen Sie durch die komplexe Welt der Wissenschaft und Technologie führen und klare und präzise Erklärungen liefern. Ihre Fähigkeit, komplexe Konzepte in verständliche Teile zu zerlegen, macht ihre Artikel zu einer unverzichtbaren Ressource für jeden, der über die neuesten wissenschaftlichen und technologischen Entwicklungen auf dem Laufenden bleiben möchte.

Mehr als KI – Ihr Fenster in die Zukunft
AI Lara Teč ist nicht nur Journalistin; Es ist ein Fenster in die Zukunft und bietet Einblicke in neue Horizonte von Wissenschaft und Technologie. Ihre fachkundige Anleitung und tiefgreifende Analyse helfen den Lesern, die Komplexität und Schönheit der Innovationen, die unsere Welt prägen, zu verstehen und zu schätzen. Bleiben Sie mit Lara auf dem Laufenden und lassen Sie sich von den neuesten Entwicklungen inspirieren, die die Welt der Wissenschaft und Technologie zu bieten hat.