Postavke privatnosti

Nowe spojrzenie na sub-Neptunes w naszej galaktyce ujawnia korelację między gęstością planetarną a rezonansem orbitalnym, według badań przeprowadzonych na uniwersytetach w Genewie i Bernie.

Naukowcy odkryli, że subneptuny, planety między wielkością Ziemi a Neptunem, wykazują różne gęstości w zależności od rezonansu ich orbit, wykluczając w ten sposób uprzedzenia obserwacyjne jako przyczynę, co rodzi nowe pytania o powstawanie układów planetarnych.

Nowe spojrzenie na sub-Neptunes w naszej galaktyce ujawnia korelację między gęstością planetarną a rezonansem orbitalnym, według badań przeprowadzonych na uniwersytetach w Genewie i Bernie.
Photo by: Domagoj Skledar/ arhiva (vlastita)

Większość gwiazd w naszej galaktyce ma planety. Najczęstsze są sub-Neptuny, planety o rozmiarach między Ziemią a Neptunem. Obliczanie ich gęstości stanowi wyzwanie dla naukowców: w zależności od zastosowanej metody pomiaru ich masy, wyróżnia się dwie populacje, gęste i mniej gęste. Czy to z powodu stronniczości obserwacyjnej czy z powodu fizycznego istnienia dwóch różnych populacji sub-Neptunów? Niedawna praca NCCR PlanetS, Uniwersytetu w Genewie (UNIGE) i Uniwersytetu w Bernie (UNIBE) popiera to drugie. Dowiedz się więcej w czasopiśmie Astronomy & Astrophysics.

Egzoplanety są obfite w naszej galaktyce. Najczęstsze są te o promieniu Ziemi (około 6.400 km) i Neptuna (około 25.000 km), znane jako "sub-Neptuny". Szacuje się, że 30% do 50% gwiazd podobnych do Słońca ma co najmniej jedną z tych planet.

Obliczanie gęstości tych planet stanowi naukowe wyzwanie. Aby oszacować ich gęstość, musimy najpierw zmierzyć ich masę i promień. Problem: planety, których masa została zmierzona metodą TTV (Transit-Timing Variation), są mniej gęste niż planety, których masa została zmierzona metodą prędkości radialnej, inną możliwą metodą pomiaru.

„Metoda TTV polega na mierzeniu zmian w czasie tranzytu. Interakcje grawitacyjne między planetami w tym samym systemie nieco zmieniają moment, w którym planety przechodzą przed swoją gwiazdą,“ wyjaśnia Jean-Baptiste Delisle, pracownik naukowy w Wydziale Astronomii na Wydziale Nauk UNIGE i współautor badania. „Z kolei metoda prędkości radialnej polega na mierzeniu zmian w prędkości gwiazdy spowodowanych obecnością planet wokół niej.“

Eliminowanie stronniczości
Międzynarodowy zespół prowadzony przez naukowców z NCCR PlanetS, UNIGE i UNIBE opublikował badanie wyjaśniające to zjawisko. Nie jest ono spowodowane stronniczością selekcyjną ani obserwacyjną, ale przyczynami fizycznymi. „Większość systemów mierzonych metodą TTV jest w rezonansie,“ wyjaśnia Adrien Leleu, adiunkt w Wydziale Astronomii na Wydziale Nauk UNIGE i główny autor badania.

Dwie planety są w rezonansie, gdy stosunek ich okresów orbitalnych jest liczbą wymierną. Na przykład, gdy jedna planeta wykonuje dwie orbity wokół swojej gwiazdy, druga planeta wykonuje dokładnie jedną. Jeśli kilka planet jest w rezonansie, tworzy to łańcuch rezonansu Laplace'a. „Dlatego zastanawialiśmy się, czy istnieje wewnętrzny związek między gęstością a rezonansową konfiguracją orbitalną systemu planetarnego,“ kontynuuje badacz.

Aby ustalić związek między gęstością a rezonansem, astronomowie musieli najpierw wykluczyć jakąkolwiek stronniczość w danych, rygorystycznie wybierając systemy planetarne do analizy statystycznej. Na przykład, duża planeta o małej masie wykryta w tranzycie wymaga więcej czasu, aby zostać wykryta w prędkościach radialnych. Zwiększa to ryzyko przerwania obserwacji, zanim planeta stanie się widoczna w danych prędkości radialnych, a tym samym zanim jej masa zostanie oszacowana.

„Ten proces selekcji prowadziłby do stronniczości w literaturze na korzyść większych mas i gęstości dla planet charakteryzowanych metodą prędkości radialnej. Ponieważ nie mamy pomiarów ich mas, mniej gęste planety byłyby wykluczone z naszych analiz,“ wyjaśnia Adrien Leleu.

Po przeprowadzeniu tego czyszczenia danych astronomowie byli w stanie za pomocą testów statystycznych ustalić, że gęstość sub-Neptunów jest mniejsza w systemach rezonansowych niż w ich odpowiednikach w systemach nierezonansowych, niezależnie od używanej metody do określania ich masy.

Kwestia rezonansu
Naukowcy sugerują kilka możliwych wyjaśnień dla tego związku, w tym procesy związane z formowaniem się systemów planetarnych. Główna hipoteza badania jest taka, że wszystkie systemy planetarne w pierwszych momentach swojego istnienia zbiegały się do stanu łańcucha rezonansu, ale tylko 5% pozostaje stabilne. Pozostałe 95% staje się niestabilne. Łańcuch rezonansu wtedy się rozpada, powodując szereg „katastrof“, takich jak zderzenia między planetami. Planety łączą się, zwiększając swoją gęstość, a następnie stabilizują się na nierezonansowych orbitach.

Ten proces tworzy dwie bardzo różne populacje sub-Neptunów: gęste i mniej gęste. „Numeryczne modele formowania i ewolucji systemów planetarnych, które rozwijaliśmy w Bernie przez ostatnie dwie dekady, dokładnie odtwarzają ten trend: planety w rezonansie są mniej gęste. Ponadto, to badanie potwierdza, że większość systemów planetarnych była miejscem gigantycznych zderzeń, podobnych lub nawet bardziej gwałtownych niż to, które doprowadziło do powstania naszego Księżyca,“ podsumowuje Yann Alibert, profesor na Wydziale Badań Kosmicznych i Planetarnych (WP) UNIBE i współkierownik Centrum Badań Kosmicznych i Zamieszkiwalności oraz współautor badania.

Źródło: UNIWERSYTET W GENEWIE

Znajdź nocleg w pobliżu

Czas utworzenia: 02 lipca, 2024

Redakcja nauki i technologii

Nasza Redakcja Nauki i Technologii powstała z wieloletniej pasji do badania, interpretowania i przybliżania złożonych tematów zwykłym czytelnikom. Piszą u nas pracownicy i wolontariusze, którzy od dziesięcioleci śledzą rozwój nauki i innowacji technologicznych – od odkryć laboratoryjnych po rozwiązania zmieniające codzienne życie. Choć piszemy w liczbie mnogiej, za każdym tekstem stoi prawdziwa osoba z dużym doświadczeniem redakcyjnym i dziennikarskim oraz głębokim szacunkiem dla faktów i informacji możliwych do zweryfikowania.

Nasza redakcja opiera swoją pracę na przekonaniu, że nauka jest najsilniejsza wtedy, gdy jest dostępna dla wszystkich. Dlatego dążymy do jasności, precyzji i zrozumiałości, unikając uproszczeń, które mogłyby obniżyć jakość treści. Często spędzamy godziny, analizując badania, dokumenty techniczne i źródła specjalistyczne, aby każdy temat przedstawić w sposób ciekawy, a nie obciążający. W każdym tekście staramy się łączyć wiedzę naukową z codziennym życiem, pokazując, jak idee z ośrodków badawczych, uniwersytetów i laboratoriów technologicznych kształtują świat wokół nas.

Wieloletnie doświadczenie dziennikarskie pozwala nam rozpoznać to, co dla czytelnika naprawdę ważne – niezależnie od tego, czy chodzi o postępy w sztucznej inteligencji, odkrycia medyczne, rozwiązania energetyczne, misje kosmiczne czy urządzenia, które trafiają do naszego życia codziennego, zanim zdążymy pomyśleć o ich możliwościach. Nasze spojrzenie na technologię nie jest wyłącznie techniczne; interesują nas także ludzkie historie stojące za wielkimi osiągnięciami – badacze, którzy latami dopracowują projekty, inżynierowie zamieniający idee w działające systemy oraz wizjonerzy przesuwający granice możliwości.

W naszej pracy kieruje nami również poczucie odpowiedzialności. Chcemy, by czytelnik mógł zaufać informacjom, które podajemy, dlatego sprawdzamy źródła, porównujemy dane i nie spieszymy się z publikacją, jeśli coś nie jest całkowicie jasne. Zaufanie buduje się wolniej niż pisze wiadomość, ale wierzymy, że tylko taki dziennikarski wysiłek ma trwałą wartość.

Dla nas technologia to coś więcej niż urządzenia, a nauka to coś więcej niż teoria. To dziedziny, które napędzają postęp, kształtują społeczeństwo i otwierają nowe możliwości dla wszystkich, którzy chcą zrozumieć, jak działa świat dziś i dokąd zmierza jutro. Dlatego podchodzimy do każdego tematu z powagą, ale i z ciekawością – bo to właśnie ciekawość otwiera drzwi najlepszym tekstom.

Naszą misją jest przybliżanie czytelnikom świata, który zmienia się szybciej niż kiedykolwiek wcześniej, w przekonaniu, że rzetelne dziennikarstwo może być mostem między ekspertami, innowatorami i wszystkimi, którzy chcą zrozumieć, co dzieje się za nagłówkami. W tym widzimy nasze właściwe zadanie: przekształcać to, co złożone, w zrozumiałe, to, co odległe, w bliskie, a to, co nieznane, w inspirujące.

UWAGA DLA NASZYCH CZYTELNIKÓW
Karlobag.eu dostarcza wiadomości, analizy i informacje o globalnych wydarzeniach oraz tematach interesujących czytelników na całym świecie. Wszystkie opublikowane informacje służą wyłącznie celom informacyjnym.
Podkreślamy, że nie jesteśmy ekspertami w dziedzinie nauki, medycyny, finansów ani prawa. Dlatego przed podjęciem jakichkolwiek decyzji na podstawie informacji z naszego portalu zalecamy konsultację z wykwalifikowanymi ekspertami.
Karlobag.eu może zawierać linki do zewnętrznych stron trzecich, w tym linki afiliacyjne i treści sponsorowane. Jeśli kupisz produkt lub usługę za pośrednictwem tych linków, możemy otrzymać prowizję. Nie mamy kontroli nad treścią ani politykami tych stron i nie ponosimy odpowiedzialności za ich dokładność, dostępność ani za jakiekolwiek transakcje przeprowadzone za ich pośrednictwem.
Jeśli publikujemy informacje o wydarzeniach lub sprzedaży biletów, prosimy pamiętać, że nie sprzedajemy biletów ani bezpośrednio, ani poprzez pośredników. Nasz portal wyłącznie informuje czytelników o wydarzeniach i możliwościach zakupu biletów poprzez zewnętrzne platformy sprzedażowe. Łączymy czytelników z partnerami oferującymi usługi sprzedaży biletów, jednak nie gwarantujemy ich dostępności, cen ani warunków zakupu. Wszystkie informacje o biletach pochodzą od stron trzecich i mogą ulec zmianie bez wcześniejszego powiadomienia.
Wszystkie informacje na naszym portalu mogą ulec zmianie bez wcześniejszego powiadomienia. Korzystając z tego portalu, zgadzasz się czytać treści na własne ryzyko.