Postavke privatnosti

New insights into sub-Neptunes in our galaxy reveal a correlation between planetary density and orbit resonance, according to research from the Universities of Geneva and Bern.

Scientists have found that sub-Neptunes, planets between the size of the Earth and Neptune, show different densities depending on the resonance of their orbits, thus excluding observational biases as the cause, which raises new questions about the formation of planetary systems.

New insights into sub-Neptunes in our galaxy reveal a correlation between planetary density and orbit resonance, according to research from the Universities of Geneva and Bern.
Photo by: Domagoj Skledar/ arhiva (vlastita)

Most stars in our galaxy have planets. The most common are sub-Neptunes, planets between the size of Earth and Neptune. Calculating their density poses a challenge for scientists: depending on the method used to measure their mass, two populations stand out, dense and less dense. Is this due to observational bias or the physical existence of two different populations of sub-Neptunes? Recent work by NCCR PlanetS, the University of Geneva (UNIGE), and the University of Bern (UNIBE) supports the latter. Learn more in the journal Astronomy & Astrophysics.

Exoplanets are abundant in our galaxy. The most common are those between the radius of Earth (about 6,400 km) and Neptune (about 25,000 km), known as "sub-Neptunes." It is estimated that 30% to 50% of Sun-like stars contain at least one of these planets.

Calculating the density of these planets presents a scientific challenge. To estimate their density, we must first measure their mass and radius. The problem: planets whose mass is measured by the TTV (Transit-Timing Variation) method are less dense than planets whose mass is measured by the radial velocity method, another possible measurement method.

„The TTV method involves measuring variations in transit times. Gravitational interactions between planets in the same system will slightly change the moment when planets pass in front of their star,“ explains Jean-Baptiste Delisle, a research fellow in the Department of Astronomy at UNIGE's Faculty of Science and co-author of the study. „The radial velocity method, on the other hand, involves measuring variations in the star's velocity caused by the presence of planets around it.“

Eliminating Bias
An international team led by scientists from NCCR PlanetS, UNIGE, and UNIBE has published a study explaining this phenomenon. It is not caused by selection or observational bias but by physical reasons. „Most systems measured by the TTV method are in resonance,“ explains Adrien Leleu, an assistant professor in the Department of Astronomy at UNIGE's Faculty of Science and the study's lead author.

Two planets are in resonance when the ratio between their orbital periods is a rational number. For example, when one planet makes two orbits around its star, the other planet makes exactly one. If several planets are in resonance, it forms a chain of Laplace resonance. „Therefore, we wondered if there is an intrinsic link between density and resonant orbital configuration of the planetary system,“ continues the researcher.

To establish a link between density and resonance, astronomers first had to rule out any bias in the data by rigorously selecting planetary systems for statistical analysis. For example, a large low-mass planet detected in transit requires more time to be detected in radial velocities. This increases the risk of observational interruption before the planet becomes visible in radial velocity data, and thus before its mass is estimated.

„This selection process would lead to bias in the literature in favor of higher masses and densities for planets characterized by the radial velocity method. Since we don't have their mass measurements, less dense planets would be excluded from our analyses,“ explains Adrien Leleu.

After this data cleaning was done, astronomers were able to determine through statistical tests that the density of sub-Neptunes is lower in resonant systems than in their non-resonant counterparts, regardless of the method used to determine their mass.

The Question of Resonance
Scientists suggest several possible explanations for this link, including the processes involved in the formation of planetary systems. The main hypothesis of the study is that all planetary systems converge towards a state of resonance chain in the early moments of their existence, but only 5% remain stable. The other 95% become unstable. The resonance chain then breaks, generating a series of "catastrophes," such as collisions between planets. Planets merge, increasing their density, and then stabilize in non-resonant orbits.

This process generates two very different populations of sub-Neptunes: dense and less dense. „Numerical models of planetary system formation and evolution that we have developed in Bern over the past two decades reproduce exactly this trend: planets in resonance are less dense. This study, moreover, confirms that most planetary systems were the site of giant collisions, similar to or even more violent than the one that gave rise to our Moon,“ concludes Yann Alibert, a professor in UNIBE's Department of Space Research and Planetary Sciences (WP) and co-director of the Center for Space and Habitability and co-author of the study.

Source: UNIVERSITY OF GENEVA

Find accommodation nearby

Creation time: 02 July, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.