Postavke privatnosti

Zastosowanie technologii AI w diagnostyce DCIS przynosi rewolucję w leczeniu raka piersi poprzez dokładną analizę tkanek

Interdyscyplinarny zespół naukowców z mit i ETH Zurich opracował zaawansowany model sztucznej inteligencji, aby dokładnie określić stadium raka przewodowego in situ (DCIS) na podstawie prostych obrazów tkanek piersi, umożliwiając lepsze metody diagnostyczne i zmniejszając nadmierne leczenie pacjentek.

Zastosowanie technologii AI w diagnostyce DCIS przynosi rewolucję w leczeniu raka piersi poprzez dokładną analizę tkanek
Photo by: Domagoj Skledar/ arhiva (vlastita)

Rak przewodowy in situ (DCIS) to przedinwazyjna forma raka piersi, która może przechodzić w bardziej niebezpieczne stadia choroby. Ten typ raka stanowi około 25 procent wszystkich diagnoz raka piersi.

Ze względu na złożoność w dokładnym określeniu typu i stadium DCIS, pacjenci często przechodzą przez niepotrzebnie intensywne terapie. Aby zmniejszyć ten problem, interdyscyplinarny zespół badawczy z MIT i ETH Zurich opracował zaawansowany model AI. Ten model umożliwia rozpoznawanie różnych stadiów DCIS przy użyciu prostych i dostępnych obrazów tkanki piersi. Badania wykazały, że zarówno stan, jak i układ komórek w próbce są kluczowe dla dokładnego określenia stadium DCIS.

Z uwagi na dostępność tych obrazów tkanki, naukowcy stworzyli jedną z największych baz danych tego rodzaju, która została wykorzystana do szkolenia i testowania modelu AI. Porównując przewidywania modelu z diagnozami patologów, stwierdzono wysoki poziom zgodności.

W przyszłości ten model może pomóc lekarzom w bardziej efektywnym diagnozowaniu prostszych przypadków bez konieczności przeprowadzania skomplikowanych testów, dając im więcej czasu na szczegółową analizę przypadków, w których trudno przewidzieć, czy DCIS stanie się inwazyjny.

"Położyliśmy podwaliny pod lepsze zrozumienie znaczenia przestrzennej organizacji komórek przy diagnozowaniu DCIS. Teraz opracowaliśmy technikę, którą można szeroko zastosować. Dalsze badania i współpraca z szpitalami będą kluczowymi krokami do wdrożenia tego modelu w praktyce klinicznej," powiedziała Caroline Uhler, profesor w Katedrze Elektrotechniki i Informatyki (EECS) oraz Instytucie Systemów Danych i Społeczeństwa (IDSS). Jest także dyrektorem Centrum Eric i Wendy Schmidt w Broad Institute of MIT i Harvard oraz badaczem w MIT Laboratory for Information and Decision Systems (LIDS).

Łączenie obrazów i sztucznej inteligencji
Między 30 a 50 procent pacjentów z DCIS rozwija inwazyjny rak. Naukowcy wciąż jednak nie wiedzą, jakich biomarkerów używać do przewidywania tego przejścia. Techniki takie jak multiplexowe barwienie lub sekwencjonowanie RNA na poziomie pojedynczych komórek mogą pomóc w określeniu stadium DCIS, ale te metody są zbyt kosztowne do szerokiego zastosowania.

W wcześniejszych badaniach naukowcy wykazali, że tania technika znana jako barwienie chromatyny może być tak samo informatywna jak droższe metody. W ramach tego badania naukowcy założyli, że połączenie tej techniki z zaawansowanym modelem uczenia maszynowego może dostarczyć podobnych informacji o stadiach raka jak droższe metody.

Najpierw stworzyli zbiór danych zawierający 560 obrazów próbek tkanek od 122 pacjentów w trzech różnych stadiach choroby. Zbiór ten został wykorzystany do szkolenia modelu AI, który uczy się reprezentacji stanu każdej komórki w obrazie próbki tkanki i na tej podstawie wnioskuje o stadium raka pacjenta.

Jednak nie każda komórka wykazuje oznaki raka, więc naukowcy musieli znaleźć sposób na ich sensowne zagregowanie. Zaprojektowali model, który tworzy klastry komórek w podobnych stanach, identyfikując osiem stanów, które są ważnymi markerami DCIS. Niektóre stany komórek są bardziej wskazujące na inwazyjny rak niż inne. Model określa odsetek komórek w każdym stanie w próbce tkanki.

Znaczenie organizacji
"W przypadku raka zmienia się również organizacja komórek. Odkryliśmy, że samo posiadanie odsetka komórek w każdym stanie nie jest wystarczające. Musisz również zrozumieć, jak komórki są zorganizowane," wyjaśnia Shivashankar.

Z tą wiedzą model został zaprojektowany tak, aby uwzględniał zarówno odsetek, jak i rozmieszczenie stanów komórek, co znacznie zwiększyło jego dokładność. "Ciekawe było zobaczyć, jak ważna jest przestrzenna organizacja. Wcześniejsze badania wykazały, że komórki blisko przewodów mlecznych są ważne. Jednak ważne jest również uwzględnienie, które komórki są blisko innych komórek," mówi Zhang.

Porównując wyniki swojego modelu z próbkami ocenianymi przez patologów, model wykazał wysoki poziom zgodności w wielu przypadkach. W przypadkach, które nie były jasne, model mógł dostarczyć informacji o cechach próbki tkanki, takich jak organizacja komórek, które patolodzy mogą wykorzystać przy podejmowaniu decyzji.

Ten wszechstronny model może być dostosowany do zastosowania w innych typach raka lub nawet w stanach neurodegeneracyjnych, co jest jednym z obszarów, które naukowcy obecnie badają. "Wykazaliśmy, że dzięki odpowiednim technikom AI ta prosta barwa może być bardzo potężna. Nadal potrzebne jest wiele badań, ale musimy uwzględniać organizację komórek w większej liczbie naszych badań," podsumowuje Uhler.

To badanie było częściowo finansowane przez Centrum Erica i Wendy Schmidta w Broad Institute, ETH Zurich, Instytut Paula Scherrera, Szwajcarską Narodową Fundację Nauki, Narodowe Instytuty Zdrowia USA, Biuro Badań Morskich USA, Klinikę Jameela MIT dla uczenia maszynowego i zdrowia, MIT-IBM Watson AI Lab oraz nagrodę Simons Investigator.

Źródło: Massachusetts Institute of Technology

Znajdź nocleg w pobliżu

Czas utworzenia: 26 lipca, 2024

Redakcja nauki i technologii

Nasza Redakcja Nauki i Technologii powstała z wieloletniej pasji do badania, interpretowania i przybliżania złożonych tematów zwykłym czytelnikom. Piszą u nas pracownicy i wolontariusze, którzy od dziesięcioleci śledzą rozwój nauki i innowacji technologicznych – od odkryć laboratoryjnych po rozwiązania zmieniające codzienne życie. Choć piszemy w liczbie mnogiej, za każdym tekstem stoi prawdziwa osoba z dużym doświadczeniem redakcyjnym i dziennikarskim oraz głębokim szacunkiem dla faktów i informacji możliwych do zweryfikowania.

Nasza redakcja opiera swoją pracę na przekonaniu, że nauka jest najsilniejsza wtedy, gdy jest dostępna dla wszystkich. Dlatego dążymy do jasności, precyzji i zrozumiałości, unikając uproszczeń, które mogłyby obniżyć jakość treści. Często spędzamy godziny, analizując badania, dokumenty techniczne i źródła specjalistyczne, aby każdy temat przedstawić w sposób ciekawy, a nie obciążający. W każdym tekście staramy się łączyć wiedzę naukową z codziennym życiem, pokazując, jak idee z ośrodków badawczych, uniwersytetów i laboratoriów technologicznych kształtują świat wokół nas.

Wieloletnie doświadczenie dziennikarskie pozwala nam rozpoznać to, co dla czytelnika naprawdę ważne – niezależnie od tego, czy chodzi o postępy w sztucznej inteligencji, odkrycia medyczne, rozwiązania energetyczne, misje kosmiczne czy urządzenia, które trafiają do naszego życia codziennego, zanim zdążymy pomyśleć o ich możliwościach. Nasze spojrzenie na technologię nie jest wyłącznie techniczne; interesują nas także ludzkie historie stojące za wielkimi osiągnięciami – badacze, którzy latami dopracowują projekty, inżynierowie zamieniający idee w działające systemy oraz wizjonerzy przesuwający granice możliwości.

W naszej pracy kieruje nami również poczucie odpowiedzialności. Chcemy, by czytelnik mógł zaufać informacjom, które podajemy, dlatego sprawdzamy źródła, porównujemy dane i nie spieszymy się z publikacją, jeśli coś nie jest całkowicie jasne. Zaufanie buduje się wolniej niż pisze wiadomość, ale wierzymy, że tylko taki dziennikarski wysiłek ma trwałą wartość.

Dla nas technologia to coś więcej niż urządzenia, a nauka to coś więcej niż teoria. To dziedziny, które napędzają postęp, kształtują społeczeństwo i otwierają nowe możliwości dla wszystkich, którzy chcą zrozumieć, jak działa świat dziś i dokąd zmierza jutro. Dlatego podchodzimy do każdego tematu z powagą, ale i z ciekawością – bo to właśnie ciekawość otwiera drzwi najlepszym tekstom.

Naszą misją jest przybliżanie czytelnikom świata, który zmienia się szybciej niż kiedykolwiek wcześniej, w przekonaniu, że rzetelne dziennikarstwo może być mostem między ekspertami, innowatorami i wszystkimi, którzy chcą zrozumieć, co dzieje się za nagłówkami. W tym widzimy nasze właściwe zadanie: przekształcać to, co złożone, w zrozumiałe, to, co odległe, w bliskie, a to, co nieznane, w inspirujące.

UWAGA DLA NASZYCH CZYTELNIKÓW
Karlobag.eu dostarcza wiadomości, analizy i informacje o globalnych wydarzeniach oraz tematach interesujących czytelników na całym świecie. Wszystkie opublikowane informacje służą wyłącznie celom informacyjnym.
Podkreślamy, że nie jesteśmy ekspertami w dziedzinie nauki, medycyny, finansów ani prawa. Dlatego przed podjęciem jakichkolwiek decyzji na podstawie informacji z naszego portalu zalecamy konsultację z wykwalifikowanymi ekspertami.
Karlobag.eu może zawierać linki do zewnętrznych stron trzecich, w tym linki afiliacyjne i treści sponsorowane. Jeśli kupisz produkt lub usługę za pośrednictwem tych linków, możemy otrzymać prowizję. Nie mamy kontroli nad treścią ani politykami tych stron i nie ponosimy odpowiedzialności za ich dokładność, dostępność ani za jakiekolwiek transakcje przeprowadzone za ich pośrednictwem.
Jeśli publikujemy informacje o wydarzeniach lub sprzedaży biletów, prosimy pamiętać, że nie sprzedajemy biletów ani bezpośrednio, ani poprzez pośredników. Nasz portal wyłącznie informuje czytelników o wydarzeniach i możliwościach zakupu biletów poprzez zewnętrzne platformy sprzedażowe. Łączymy czytelników z partnerami oferującymi usługi sprzedaży biletów, jednak nie gwarantujemy ich dostępności, cen ani warunków zakupu. Wszystkie informacje o biletach pochodzą od stron trzecich i mogą ulec zmianie bez wcześniejszego powiadomienia.
Wszystkie informacje na naszym portalu mogą ulec zmianie bez wcześniejszego powiadomienia. Korzystając z tego portalu, zgadzasz się czytać treści na własne ryzyko.