Postavke privatnosti

Primjena AI tehnologije u dijagnostici DCIS-a donosi revoluciju u tretmanu raka dojke kroz preciznu analizu tkiva

Interdisciplinarni tim znanstvenika s MIT-a i ETH Zuricha razvio je napredni AI model za precizno određivanje stadija duktalnog karcinoma in situ (DCIS) iz jednostavnih slika tkiva dojke, omogućujući bolje dijagnostičke metode i smanjenje pretjeranog liječenja pacijenata.

Primjena AI tehnologije u dijagnostici DCIS-a donosi revoluciju u tretmanu raka dojke kroz preciznu analizu tkiva
Photo by: Domagoj Skledar/ arhiva (vlastita)

Duktalni karcinom in situ (DCIS) predstavlja preinvazivni oblik tumora dojke koji može progresirati u opasnije stadije bolesti. Ovaj tip raka čini otprilike 25 posto svih dijagnoza raka dojke.

Zbog složenosti u preciznom određivanju tipa i stadija DCIS-a, pacijenti često prolaze kroz nepotrebno intenzivne tretmane. Kako bi se ovaj problem smanjio, interdisciplinarni istraživački tim s MIT-a i ETH Zuricha razvio je napredni AI model. Ovaj model omogućava prepoznavanje različitih stadija DCIS-a koristeći jednostavne i pristupačne slike tkiva dojke. Kroz istraživanje je pokazano da su i stanje i raspored stanica unutar uzorka ključni za točno određivanje stadija DCIS-a.

S obzirom na dostupnost ovih slika tkiva, istraživači su stvorili jednu od najvećih baza podataka te vrste, koja je korištena za treniranje i testiranje AI modela. Kada su usporedili predikcije modela s dijagnozama patologa, utvrdili su visoku razinu podudarnosti.

U budućnosti, ovaj model može pomoći liječnicima u efikasnijem dijagnosticiranju jednostavnijih slučajeva bez potrebe za kompliciranim testovima, omogućujući im više vremena za detaljnu analizu slučajeva kod kojih je teško predvidjeti hoće li DCIS postati invazivan.

"Postavili smo temelje za bolje razumijevanje važnosti prostorne organizacije stanica pri dijagnosticiranju DCIS-a. Sada smo razvili tehniku koja se može široko primijeniti. Daljnje istraživanje i suradnja s bolnicama bit će ključni koraci za primjenu ovog modela u kliničkoj praksi," izjavila je Caroline Uhler, profesorica na Odsjeku za elektrotehniku i računalne znanosti (EECS) i Institutu za podatkovne sustave i društvo (IDSS). Također je direktorica Eric i Wendy Schmidt centra na Broad institutu MIT-a i Harvarda te istraživačica u MIT-ovom Laboratoriju za informacijske i odluke sustave (LIDS).

Kombiniranje slika i umjetne inteligencije
Između 30 i 50 posto pacijenata s DCIS-om razvije invazivni stadij raka. Međutim, istraživači još uvijek ne znaju koje biomarkere koristiti za predviđanje tog prijelaza. Tehnike poput multiplexiranog bojenja ili sekvenciranja RNA na razini pojedinačnih stanica mogu pomoći u određivanju stadija DCIS-a, no te su metode preskupe za široku primjenu.

U prethodnim istraživanjima, znanstvenici su pokazali da jeftina tehnika poznata kao bojenje kromatina može biti jednako informativna kao i skuplje metode. Za ovu studiju, istraživači su pretpostavili da kombinacija ove tehnike s naprednim modelom strojnog učenja može pružiti slične informacije o stadiju raka kao i skuplje metode.

Prvo su stvorili skup podataka koji sadrži 560 slika uzoraka tkiva od 122 pacijenta u tri različita stadija bolesti. Ovaj skup podataka korišten je za treniranje AI modela koji uči reprezentaciju stanja svake stanice u slici uzorka tkiva, te na temelju toga inferira stadij raka pacijenta.

Međutim, ne svaka stanica pokazuje znakove raka, pa su istraživači morali naći način za njihovo smisleno agregiranje. Dizajnirali su model koji stvara klastere stanica u sličnim stanjima, identificirajući osam stanja koja su važni markeri DCIS-a. Neka stanja stanica su indikativnija za invazivni rak od drugih. Model određuje udio stanica u svakom stanju unutar uzorka tkiva.

Važnost organizacije
"U raku, organizacija stanica također se mijenja. Otkrili smo da samo posjedovanje udjela stanica u svakom stanju nije dovoljno. Također morate razumjeti kako su stanice organizirane," objašnjava Shivashankar.

S ovim uvidom, model je dizajniran da uzima u obzir i udio i raspored stanja stanica, što je značajno povećalo njegovu točnost. "Zanimljivo nam je bilo vidjeti koliko je prostorna organizacija važna. Prethodne studije su pokazale da su stanice koje su blizu mliječnih kanala važne. No, također je važno razmotriti koje su stanice blizu kojih drugih stanica," kaže Zhang.

Kada su usporedili rezultate svog modela s uzorcima koje su evaluirali patolozi, model je pokazao visoku razinu podudarnosti u mnogim slučajevima. U slučajevima koji nisu bili jasni, model je mogao pružiti informacije o značajkama uzorka tkiva, poput organizacije stanica, koje patolozi mogu koristiti u donošenju odluka.

Ovaj svestrani model može se prilagoditi za upotrebu kod drugih vrsta raka ili čak neurodegenerativnih stanja, što je jedno od područja koja istraživači trenutno istražuju. "Pokazali smo da, s pravim AI tehnikama, ovaj jednostavan stain može biti vrlo moćan. Još uvijek je potrebno puno istraživanja, ali moramo uzeti u obzir organizaciju stanica u više naših studija," zaključuje Uhler.

Ovo istraživanje djelomično su financirali Eric i Wendy Schmidt centar na Broad institutu, ETH Zurich, Paul Scherrer institut, Švicarska nacionalna zaklada za znanost, Američki nacionalni instituti za zdravlje, Američki ured za mornarička istraživanja, MIT Jameel klinika za strojno učenje i zdravlje, MIT-IBM Watson AI laboratorij i Simons Investigator nagrada.

Izvor: Massachusetts Institute of Technology

Kreirano: petak, 26. srpnja, 2024.

Pronađite smještaj u blizini

Redakcija za znanost i tehnologiju

Naša Redakcija za znanost i tehnologiju nastala je iz dugogodišnje strasti prema istraživanju, tumačenju i približavanju složenih tema običnim čitateljima. U njoj pišu zaposlenici i volonteri koji već desetljećima prate razvoj znanosti i tehnoloških inovacija, od laboratorijskih otkrića do rješenja koja mijenjaju svakodnevni život. Iako pišemo u množini, iza svakog teksta stoji stvarna osoba s dugim uredničkim i novinarskim iskustvom te dubokim poštovanjem prema činjenicama i provjerljivim informacijama.

Naša redakcija temelji svoj rad na uvjerenju da je znanost najjača kada je dostupna svima. Zato težimo jasnoći, preciznosti i razumljivosti, ali bez pojednostavljivanja koje bi narušilo kvalitetu sadržaja. Često provodimo sate proučavajući istraživanja, tehničke dokumente i stručne izvore kako bismo svaku temu predstavili čitatelju na način koji ga neće opteretiti, nego zainteresirati. U svakom tekstu nastojimo povezati znanstvene spoznaje s realnim životom, pokazujući kako ideje iz istraživačkih centara, sveučilišta i tehnoloških laboratorija oblikuju svijet oko nas.

Dugogodišnje iskustvo u novinarstvu omogućuje nam da prepoznamo što je za čitatelja zaista važno, bilo da se radi o napretku u umjetnoj inteligenciji, medicinskim otkrićima, energetskim rješenjima, svemirskim misijama ili uređajima koji ulaze u našu svakodnevicu prije nego što stignemo uopće zamisliti njihove mogućnosti. Naš pogled na tehnologiju nije isključivo tehnički; zanimaju nas i ljudske priče koje stoje iza velikih pomaka – istraživači koji godinama privode kraju projekte, inženjeri koji pretvaraju ideje u funkcionalne sustave, te vizionari koji guraju granice mogućega.

U radu nas vodi i osjećaj odgovornosti. Želimo da čitatelj može imati povjerenje u informacije koje donosimo, pa provjeravamo izvore, uspoređujemo podatke i ne žurimo s objavom ako nešto nije sasvim jasno. Povjerenje gradimo sporije nego što se piše vijest, ali vjerujemo da je jedino takvo novinarstvo dugoročno vrijedno.

Za nas je tehnologija više od uređaja, a znanost više od teorije. To su područja koja pokreću napredak, oblikuju društvo i pružaju nove mogućnosti svima koji žele razumjeti kako svijet funkcionira danas i kamo ide sutra. Upravo zato u našoj redakciji pristupamo svakoj temi s ozbiljnošću, ali i s dozom znatiželje, jer upravo znatiželja otvara vrata najboljim tekstovima.

Naša je misija približiti čitateljima svijet koji se mijenja brže nego ikada prije, uz uvjerenje da kvalitetno novinarstvo može biti most između stručnjaka, inovatora i svih onih koji žele razumjeti što se događa iza naslova. U tome vidimo svoj pravi zadatak: pretvoriti kompleksno u razumljivo, udaljeno u blisko, a nepoznato u inspirativno.

NAPOMENA ZA NAŠE ČITATELJE
Karlobag.eu pruža vijesti, analize i informacije o globalnim događanjima i temama od interesa za čitatelje širom svijeta. Sve objavljene informacije služe isključivo u informativne svrhe.
Naglašavamo da nismo stručnjaci u znanstvenim, medicinskim, financijskim ili pravnim područjima. Stoga, prije donošenja bilo kakvih odluka temeljenih na informacijama s našeg portala, preporučujemo da se konzultirate s kvalificiranim stručnjacima.
Karlobag.eu može sadržavati poveznice na vanjske stranice trećih strana, uključujući affiliate linkove i sponzorirane sadržaje. Ako kupite proizvod ili uslugu putem ovih poveznica, možemo ostvariti proviziju. Nemamo kontrolu nad sadržajem ili politikama tih stranica te ne snosimo odgovornost za njihovu točnost, dostupnost ili bilo kakve transakcije koje obavite putem njih.
Ako objavljujemo informacije o događajima ili prodaji ulaznica, napominjemo da mi ne prodajemo ulaznice niti izravno niti preko posrednika. Naš portal isključivo informira čitatelje o događajima i mogućnostima kupnje putem vanjskih prodajnih platformi. Povezujemo čitatelje s partnerima koji nude usluge prodaje ulaznica, ali ne jamčimo njihovu dostupnost, cijene ili uvjete kupnje. Sve informacije o ulaznicama preuzete su od trećih strana i mogu biti podložne promjenama bez prethodne najave. Preporučujemo da prije bilo kakve kupnje temeljito provjerite uvjete prodaje kod odabranog partnera, budući da portal Karlobag.eu ne preuzima odgovornost za transakcije ili uvjete prodaje ulaznica.
Sve informacije na našem portalu podložne su promjenama bez prethodne najave. Korištenjem ovog portala prihvaćate da čitate sadržaj na vlastitu odgovornost.