Postavke privatnosti

How the flow of water within muscle fibers affects muscle contraction speed: new research from the University of Michigan

The flow of water within muscle fibers is crucial for muscle contraction speed, reveals new research from the University of Michigan. This discovery may have a significant impact on understanding muscle performance in various organisms, including the ultrafast movements of insects

How the flow of water within muscle fibers affects muscle contraction speed: new research from the University of Michigan
Photo by: Domagoj Skledar/ arhiva (vlastita)

Research from the University of Michigan reveals how the flow of water within muscle fiber affects the speed of muscle contraction. Almost all organisms use muscles for movement, and it is known that muscles, like all other cells, contain about 70% water. However, scientists still do not know what sets the performance limits of muscles. Previous research has focused on the molecular level of muscles, neglecting the fact that muscle fibers are three-dimensional and full of fluid.

Physicist Suraj Shankar from the University of Michigan and L. Mahadevan, a professor of physics at Harvard University, created a theoretical model that shows the role of water in muscle contraction. They found that the way fluid moves through muscle fiber determines the speed of contraction.

They also discovered a new type of elasticity called peculiar elasticity, which allows muscles to generate force using three-dimensional deformations. This phenomenon is visible when muscle fiber contracts longitudinally, causing transverse bulging as well.

This framework can be applied to many other cells and tissues, which are also mostly composed of water, and can be applied to ultra-fast movements of single-celled microorganisms. Their findings, published in the journal Nature Physics, could impact the design of soft actuators, fast artificial muscles, and shape-changing materials, which currently have slow contraction speeds because they are externally activated.

Scientists visualize each muscle fiber as an active sponge that squeezes itself, a sponge-like material full of water, which can contract and squeeze using molecular motors.

"Muscle fibers consist of many components, such as proteins, cell nuclei, organelles like mitochondria, and molecular motors like myosin, which convert chemical fuel into motion and drive muscle contraction," said Shankar. "All these components form a porous network surrounded by water. So, it is appropriate to describe muscles as active sponges."

The squeezing process requires time to move water, so researchers hypothesized that this water movement through muscle fiber sets the upper limit of muscle fiber twitch speed.

To test their theory, they modeled muscle movements in various organisms, including mammals, insects, birds, fish, and reptiles, focusing on animals that use muscles for rapid movements. They found that muscles that produce sound, such as the rattling in a rattlesnake's tail, do not depend on fluid flow. Instead, these contractions are controlled by the nervous system and are more determined by molecular properties.

In smaller organisms, such as flying insects that flap their wings several hundred to a thousand times per second, these contractions are too fast to be directly controlled by neurons. Here, fluid flows are more important.

"In these cases, we found that fluid flows within muscle fiber are important and that our active hydraulic mechanism likely limits the fastest contraction speeds," said Shankar. "Some insects, like mosquitoes, seem close to our theoretically predicted limit, but direct experimental testing is needed."

They also found that when muscle fibers act as active sponges, the process also causes muscles to act as active elastic engines. When something is elastic, like a rubber band, it stores energy while resisting deformation. Imagine holding a rubber band between two fingers and pulling it back. When you release the rubber band, it also releases the energy stored while it was stretched.

But when a muscle converts chemical fuel into mechanical work, it can produce energy like an engine, violating the conservation of energy law. In this case, muscles exhibit a new trait called "peculiar elasticity," where the response to squeezing in one direction is not reciprocal. Unlike a rubber band, when muscles contract and relax along their length, they also bulge transversely, and their energy is not the same.

"These results contradict the prevailing view that focuses on molecular details and neglects the fact that muscles are long and fibrous, hydrated, and have processes on multiple scales," said Shankar. "Our results suggest a revised view of muscle function that is essential for understanding their physiology. This is also crucial for understanding the origins, scope, and limits underlying various forms of animal movement."

Source: University of Michigan

Unterkünfte in der Nähe finden

Erstellungszeitpunkt: 21 Juli, 2024

Redaktion für Wissenschaft und Technologie

Unsere Redaktion für Wissenschaft und Technologie ist aus einer langjährigen Leidenschaft für das Erforschen, Interpretieren und Vermitteln komplexer Themen an alltägliche Leser entstanden. Bei uns schreiben Mitarbeiter und freiwillige Autoren, die seit Jahrzehnten die Entwicklungen in Wissenschaft und technologischer Innovation verfolgen – von Laborentdeckungen bis zu Lösungen, die den Alltag verändern. Obwohl wir in der Mehrzahl schreiben, steht hinter jedem Text eine echte Person mit umfangreicher redaktioneller und journalistischer Erfahrung sowie großem Respekt gegenüber Fakten und überprüfbaren Informationen.

Unsere Redaktion arbeitet aus der Überzeugung heraus, dass Wissenschaft am stärksten ist, wenn sie für alle zugänglich ist. Deshalb streben wir nach Klarheit, Präzision und Verständlichkeit, ohne jene Vereinfachungen, die die Qualität des Inhalts mindern würden. Oft verbringen wir Stunden mit dem Studium von Forschungsarbeiten, technischen Dokumenten und Fachquellen, um jedes Thema so zu präsentieren, dass es den Leser interessiert und nicht belastet. In jedem Text versuchen wir, wissenschaftliche Erkenntnisse mit dem realen Leben zu verbinden und zu zeigen, wie Ideen aus Forschungszentren, Universitäten und Technologielaboren die Welt um uns herum gestalten.

Unsere langjährige journalistische Erfahrung ermöglicht uns zu erkennen, was für den Leser wirklich wichtig ist – ob es um Fortschritte in der künstlichen Intelligenz geht, medizinische Entdeckungen, Energielösungen, Weltraummissionen oder Geräte, die unseren Alltag erreichen, bevor wir uns überhaupt ihre Möglichkeiten vorstellen können. Unser Blick auf Technologie ist nicht nur technisch; uns interessieren auch die menschlichen Geschichten hinter großen Entwicklungen – Forscher, die jahrelang an Projekten arbeiten, Ingenieure, die Ideen in funktionierende Systeme verwandeln, und Visionäre, die die Grenzen des Möglichen erweitern.

Auch ein starkes Verantwortungsgefühl leitet uns bei der Arbeit. Wir möchten, dass der Leser Vertrauen in die von uns gelieferten Informationen haben kann, daher überprüfen wir Quellen, vergleichen Daten und zögern mit der Veröffentlichung, wenn etwas nicht ganz klar ist. Vertrauen entsteht langsamer, als Nachrichten geschrieben werden, doch wir glauben, dass nur solch ein Journalismus langfristig wertvoll ist.

Für uns ist Technologie mehr als Geräte, und Wissenschaft mehr als Theorie. Es sind Bereiche, die Fortschritt antreiben, die Gesellschaft prägen und neue Möglichkeiten eröffnen für alle, die verstehen wollen, wie die Welt heute funktioniert und wohin sie morgen geht. Deshalb gehen wir jedes Thema mit Ernsthaftigkeit, aber auch mit Neugier an – denn gerade Neugier öffnet die Tür zu den besten Texten.

Unsere Mission ist es, den Lesern eine Welt näherzubringen, die sich schneller denn je verändert, im Bewusstsein, dass qualitativ hochwertiger Journalismus eine Brücke sein kann zwischen Experten, Innovatoren und all jenen, die verstehen wollen, was hinter den Schlagzeilen geschieht. Darin sehen wir unsere wahre Aufgabe: das Komplexe verständlich zu machen, das Entfernte nah und das Unbekannte inspirierend.

HINWEIS FÜR UNSERE LESER
Karlobag.eu bietet Nachrichten, Analysen und Informationen zu globalen Ereignissen und Themen, die für Leser weltweit von Interesse sind. Alle veröffentlichten Informationen dienen ausschließlich zu Informationszwecken.
Wir betonen, dass wir keine Experten in den Bereichen Wissenschaft, Medizin, Finanzen oder Recht sind. Daher empfehlen wir, vor der Entscheidungsfindung auf Basis der Informationen unseres Portals, sich mit qualifizierten Experten zu beraten.
Karlobag.eu kann Links zu externen Drittanbieterseiten enthalten, einschließlich Affiliate-Links und gesponserten Inhalten. Wenn Sie über diese Links ein Produkt oder eine Dienstleistung kaufen, können wir eine Provision erhalten. Wir haben keine Kontrolle über die Inhalte oder Richtlinien dieser Seiten und übernehmen keine Verantwortung für deren Genauigkeit, Verfügbarkeit oder für Transaktionen, die Sie über diese Seiten tätigen.
Wenn wir Informationen über Veranstaltungen oder Ticketverkäufe veröffentlichen, beachten Sie bitte, dass wir weder direkt noch über Vermittler Tickets verkaufen. Unser Portal informiert ausschließlich über Veranstaltungen und Kaufmöglichkeiten über externe Verkaufsplattformen. Wir verbinden Leser mit Partnern, die Ticketverkaufsdienste anbieten, garantieren jedoch nicht deren Verfügbarkeit, Preise oder Kaufbedingungen. Alle Ticketinformationen werden von Dritten bezogen und können ohne vorherige Ankündigung Änderungen unterliegen. Wir empfehlen, die Verkaufsbedingungen beim gewählten Partner vor einem Kauf sorgfältig zu überprüfen, da das Portal Karlobag.eu keine Verantwortung für Transaktionen oder Verkaufsbedingungen von Tickets übernimmt.
Alle Informationen auf unserem Portal können ohne vorherige Ankündigung geändert werden. Durch die Nutzung dieses Portals stimmen Sie zu, dass Sie die Inhalte auf eigenes Risiko lesen.