Postavke privatnosti

How the flow of water within muscle fibers affects muscle contraction speed: new research from the University of Michigan

The flow of water within muscle fibers is crucial for muscle contraction speed, reveals new research from the University of Michigan. This discovery may have a significant impact on understanding muscle performance in various organisms, including the ultrafast movements of insects

How the flow of water within muscle fibers affects muscle contraction speed: new research from the University of Michigan
Photo by: Domagoj Skledar/ arhiva (vlastita)

Research from the University of Michigan reveals how the flow of water within muscle fiber affects the speed of muscle contraction. Almost all organisms use muscles for movement, and it is known that muscles, like all other cells, contain about 70% water. However, scientists still do not know what sets the performance limits of muscles. Previous research has focused on the molecular level of muscles, neglecting the fact that muscle fibers are three-dimensional and full of fluid.

Physicist Suraj Shankar from the University of Michigan and L. Mahadevan, a professor of physics at Harvard University, created a theoretical model that shows the role of water in muscle contraction. They found that the way fluid moves through muscle fiber determines the speed of contraction.

They also discovered a new type of elasticity called peculiar elasticity, which allows muscles to generate force using three-dimensional deformations. This phenomenon is visible when muscle fiber contracts longitudinally, causing transverse bulging as well.

This framework can be applied to many other cells and tissues, which are also mostly composed of water, and can be applied to ultra-fast movements of single-celled microorganisms. Their findings, published in the journal Nature Physics, could impact the design of soft actuators, fast artificial muscles, and shape-changing materials, which currently have slow contraction speeds because they are externally activated.

Scientists visualize each muscle fiber as an active sponge that squeezes itself, a sponge-like material full of water, which can contract and squeeze using molecular motors.

"Muscle fibers consist of many components, such as proteins, cell nuclei, organelles like mitochondria, and molecular motors like myosin, which convert chemical fuel into motion and drive muscle contraction," said Shankar. "All these components form a porous network surrounded by water. So, it is appropriate to describe muscles as active sponges."

The squeezing process requires time to move water, so researchers hypothesized that this water movement through muscle fiber sets the upper limit of muscle fiber twitch speed.

To test their theory, they modeled muscle movements in various organisms, including mammals, insects, birds, fish, and reptiles, focusing on animals that use muscles for rapid movements. They found that muscles that produce sound, such as the rattling in a rattlesnake's tail, do not depend on fluid flow. Instead, these contractions are controlled by the nervous system and are more determined by molecular properties.

In smaller organisms, such as flying insects that flap their wings several hundred to a thousand times per second, these contractions are too fast to be directly controlled by neurons. Here, fluid flows are more important.

"In these cases, we found that fluid flows within muscle fiber are important and that our active hydraulic mechanism likely limits the fastest contraction speeds," said Shankar. "Some insects, like mosquitoes, seem close to our theoretically predicted limit, but direct experimental testing is needed."

They also found that when muscle fibers act as active sponges, the process also causes muscles to act as active elastic engines. When something is elastic, like a rubber band, it stores energy while resisting deformation. Imagine holding a rubber band between two fingers and pulling it back. When you release the rubber band, it also releases the energy stored while it was stretched.

But when a muscle converts chemical fuel into mechanical work, it can produce energy like an engine, violating the conservation of energy law. In this case, muscles exhibit a new trait called "peculiar elasticity," where the response to squeezing in one direction is not reciprocal. Unlike a rubber band, when muscles contract and relax along their length, they also bulge transversely, and their energy is not the same.

"These results contradict the prevailing view that focuses on molecular details and neglects the fact that muscles are long and fibrous, hydrated, and have processes on multiple scales," said Shankar. "Our results suggest a revised view of muscle function that is essential for understanding their physiology. This is also crucial for understanding the origins, scope, and limits underlying various forms of animal movement."

Source: University of Michigan

Find accommodation nearby

Creation time: 21 July, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.