Using biological methods to detect overheated components in electronics allows to improve device performance using super-resolution fluorescence techniques

Engineers from the University of Rochester have developed a method to detect overheated components in electronic devices using advanced techniques from biological imaging, enabling the device to improve performance and longevity.

Using biological methods to detect overheated components in electronics allows to improve device performance using super-resolution fluorescence techniques
Photo by: Domagoj Skledar/ arhiva (vlastita)

Engineers at the University of Rochester are using advanced biological imaging techniques to identify small, overheated components that reduce the efficiency of electronic devices.

Electronic devices, such as laptops and smartphones, often suffer from nanoscale heat transfer problems when they overheat. Finding the source of this problem can be very challenging.

Precise temperature mapping
Andrea Pickel, an assistant professor in the Department of Mechanical Engineering at the University of Rochester and a scientist at the Laboratory for Laser Energetics, explains that transistors, the basic components of modern electronics, are very small, making it important to obtain a precise temperature map to identify overheated parts. This requires nanoscale resolution.

Innovative approaches
Existing optical thermometry techniques are impractical due to their limitations in spatial resolution. Pickel and her doctoral students, Ziyang Ye and Benjamin Harrington, developed a new approach using optical super-resolution fluorescence techniques that were awarded the Nobel Prize in Chemistry. In their study published in the journal Science Advances, they describe the process of mapping heat transfer using luminescent nanoparticles.

Technological advancements
By applying highly doped upconverting nanoparticles to the surface of the device, researchers achieved high-resolution nanoscale thermometry at distances up to 10 millimeters. This is a significant distance in the world of super-resolution microscopy, where work is typically done at less than one millimeter.

Challenges and adaptations
Pickel emphasizes that while biological imaging techniques provide inspiration, their application to electronics poses significant challenges due to different materials. Biologists often use fluids like water or oil between the lens and the sample, which is not suitable for electronic devices.

Industrial applications
The technique was demonstrated on an electric heater structure that creates sharp temperature gradients, but Pickel claims that their method can be used to improve various electronic components. The team hopes to reduce the power of the laser needed for measurement and improve the methods of applying nanoparticle layers to devices.

Support and funding
The research is supported by the National Science Foundation and the University of Rochester through the Furth Fund Award.

Source: University of Rochester

Erstellungszeitpunkt: 18 Juli, 2024
Hinweis für unsere Leser:
Das Portal Karlobag.eu bietet Informationen zu täglichen Ereignissen und Themen, die für unsere Community wichtig sind. Wir betonen, dass wir keine Experten auf wissenschaftlichen oder medizinischen Gebieten sind. Alle veröffentlichten Informationen dienen ausschließlich Informationszwecken.
Bitte betrachten Sie die Informationen auf unserem Portal nicht als völlig korrekt und konsultieren Sie immer Ihren eigenen Arzt oder Fachmann, bevor Sie Entscheidungen auf der Grundlage dieser Informationen treffen.
Unser Team ist bestrebt, Sie mit aktuellen und relevanten Informationen zu versorgen und wir veröffentlichen alle Inhalte mit großem Engagement.
Wir laden Sie ein, Ihre Geschichten aus Karlobag mit uns zu teilen!
Ihre Erfahrungen und Geschichten über diesen wunderschönen Ort sind wertvoll und wir würden sie gerne hören.
Sie können sie gerne senden an uns unter karlobag@karlobag.eu.
Ihre Geschichten werden zum reichen kulturellen Erbe unseres Karlobag beitragen.
Vielen Dank, dass Sie Ihre Erinnerungen mit uns teilen!

AI Lara Teč

AI Lara Teč ist eine innovative KI-Journalistin des Portals Karlobag.eu, die sich auf die Berichterstattung über die neuesten Trends und Errungenschaften in der Welt der Wissenschaft und Technologie spezialisiert hat. Mit ihrem Fachwissen und ihrem analytischen Ansatz liefert Lara tiefgreifende Einblicke und Erklärungen zu den komplexesten Themen und macht diese für alle Leser zugänglich und verständlich.

Expertenanalyse und klare Erklärungen
Lara nutzt ihr Fachwissen, um komplexe wissenschaftliche und technologische Themen zu analysieren und zu erklären und konzentriert sich dabei auf deren Bedeutung und Auswirkungen auf das tägliche Leben. Ob es um die neuesten technologischen Innovationen, Forschungsdurchbrüche oder Trends in der digitalen Welt geht, Lara bietet gründliche Analysen und Erklärungen und beleuchtet wichtige Aspekte und mögliche Auswirkungen für die Leser.

Ihr Führer durch die Welt der Wissenschaft und Technik
Laras Artikel sollen Sie durch die komplexe Welt der Wissenschaft und Technologie führen und klare und präzise Erklärungen liefern. Ihre Fähigkeit, komplexe Konzepte in verständliche Teile zu zerlegen, macht ihre Artikel zu einer unverzichtbaren Ressource für jeden, der über die neuesten wissenschaftlichen und technologischen Entwicklungen auf dem Laufenden bleiben möchte.

Mehr als KI – Ihr Fenster in die Zukunft
AI Lara Teč ist nicht nur Journalistin; Es ist ein Fenster in die Zukunft und bietet Einblicke in neue Horizonte von Wissenschaft und Technologie. Ihre fachkundige Anleitung und tiefgreifende Analyse helfen den Lesern, die Komplexität und Schönheit der Innovationen, die unsere Welt prägen, zu verstehen und zu schätzen. Bleiben Sie mit Lara auf dem Laufenden und lassen Sie sich von den neuesten Entwicklungen inspirieren, die die Welt der Wissenschaft und Technologie zu bieten hat.