Znanstvenici s MIT-a i Armijskog istraživačkog laboratorija postigli rekordnu mobilnost elektrona u tankim filmovima ternarnog tetradimita

Fizičari su uspjeli stvoriti ultratanke filmove ternarnog tetradimita s rekordnom mobilnošću elektrona, otvarajući put ka učinkovitijim i održivijim elektroničkim uređajima s manjom potrošnjom energije.

Znanstvenici s MIT-a i Armijskog istraživačkog laboratorija postigli rekordnu mobilnost elektrona u tankim filmovima ternarnog tetradimita
Photo by: Domagoj Skledar/ arhiva (vlastita)

Materijal s visokom mobilnošću elektrona je poput autoceste bez prometa. Elektroni koji ulaze u materijal kreću se bez prepreka ili zastoja koji bi ih usporili ili raspršili.

Što je mobilnost elektrona veća, to je učinkovitija električna vodljivost materijala, a manje energije se gubi dok elektroni prolaze kroz materijal. Napredni materijali s visokom mobilnošću elektrona bit će ključni za učinkovitije i održivije elektroničke uređaje koji mogu obaviti više posla uz manju potrošnju energije.

Sada su fizičari s MIT-a, Armijskog istraživačkog laboratorija i drugih institucija postigli rekordnu razinu mobilnosti elektrona u tankom filmu ternarnog tetradimita — klase minerala koja se prirodno nalazi u dubokim hidrotermalnim naslagama zlata i kvarca.

Za ovu studiju, znanstvenici su uzgojili čiste, ultratanke filmove materijala, na način koji je minimizirao nedostatke u njegovoj kristalnoj strukturi. Otkrili su da ovaj gotovo savršeni film — mnogo tanji od ljudske vlasi — pokazuje najveću mobilnost elektrona u svojoj klasi.

Tim je uspio procijeniti mobilnost elektrona materijala otkrivajući kvantne oscilacije kada električna struja prolazi kroz njega. Ove oscilacije su znak kvantno-mehaničkog ponašanja elektrona u materijalu. Istraživači su otkrili određeni ritam oscilacija koji je karakterističan za visoku mobilnost elektrona — veću nego kod bilo kojeg ternarnog tankog filma ove klase do sada.

Jagadeesh Moodera viši znanstvenik na MIT-ovom odjelu za fiziku, kaže: "Prije, ono što su ljudi postigli u smislu mobilnosti elektrona u ovim sustavima bilo je poput prometa na cesti u izgradnji — zaostajete, ne možete voziti, prašnjavo je i nered. U ovom novom optimiziranom materijalu, to je kao vožnja po Mass Pike-u bez prometa."

Rezultati tima, objavljeni danas u časopisu Materials Today Physics, ukazuju na to da su ternarni tetradimitni tanki filmovi obećavajući materijal za buduću elektroniku, poput nosivih termoelektričnih uređaja koji učinkovito pretvaraju otpadnu toplinu u električnu energiju. (Tetradimiti su aktivni materijali koji uzrokuju efekt hlađenja u komercijalnim termoelektričnim hladnjacima.) Materijal bi također mogao biti osnova za spintroničke uređaje, koji obrađuju informacije koristeći spin elektrona, koristeći daleko manje energije od konvencionalnih uređaja baziranih na siliciju.

Studija također koristi kvantne oscilacije kao vrlo učinkovit alat za mjerenje elektronske izvedbe materijala.

Hang Chi  autor studije i bivši znanstvenik na MIT-u, sada na Sveučilištu Ottawa, kaže: "Koristimo ovu oscilaciju kao brzi testni kit. Proučavajući ovaj delikatni kvantni ples elektrona, znanstvenici mogu početi razumijevati i identificirati nove materijale za sljedeću generaciju tehnologija koje će napajati naš svijet."
Chi i Moodera suautori uključuju Patricka Taylora, bivšeg člana MIT Lincoln Laboratory, zajedno s Owenom Vailom i Harryjem Hierom iz Armijskog istraživačkog laboratorija, te Brandi Wooten i Josephom Heremansom sa Sveučilišta Ohio State.

Podrijetlo tetradimita
Ime “tetradimit” potječe od grčke riječi “tetra” za “četiri” i “dymite”, što znači “blizanac”. Oba pojma opisuju kristalnu strukturu minerala, koja se sastoji od romboedralnih kristala koji su “blizanci” u grupama od četiri — tj. imaju identične kristalne strukture koje dijele jednu stranu.

Tetradimiti sadrže kombinacije bizmuta, antimon telurija, sumpora i selena. Pedesetih godina prošlog stoljeća, znanstvenici su otkrili da tetradimiti pokazuju poluvodička svojstva koja bi mogla biti idealna za termoelektrične primjene: Mineral u svom velikom kristalnom obliku mogao je pasivno pretvarati toplinu u električnu energiju.

Tada je devedesetih godina prošlog stoljeća, pokojna profesorica s Instituta Mildred Dresselhaus predložila da bi termoelektrična svojstva minerala mogla biti znatno poboljšana, ne u svom velikom obliku, već unutar mikroskopske, nanometarske površine, gdje su interakcije elektrona izraženije. (Heremans je u to vrijeme radio u Dresselhausovoj grupi.)

Napredak u rastu tankih filmova
"Postalo je jasno da kada dovoljno dugo i dovoljno blizu promatrate ovaj materijal, događaju se nove stvari," kaže Chi. "Ovaj materijal je identificiran kao topološki izolator, gdje su znanstvenici mogli vidjeti vrlo zanimljive pojave na njihovoj površini. Ali da bismo nastavili otkrivati nove stvari, moramo ovladati rastom materijala."

Kako bi uzgojili tanke filmove čistog kristala, istraživači su koristili molekularnu zraku epitaksiju — metodu pri kojoj se snop molekula ispaljuje na podlogu, obično u vakuumu, s precizno kontroliranim temperaturama. Kada se molekule talože na podlogu, kondenziraju se i polako rastu, jedan atomski sloj u isto vrijeme. Kontroliranjem vremena i vrste molekula koje se talože, znanstvenici mogu uzgajati ultratanke kristalne filmove u točnim konfiguracijama, s malo ili bez ikakvih nedostataka.

Patrick Taylor,suautor, objašnjava: "Obično se bizmut i telur mogu zamijeniti svojim položajem, što stvara nedostatke u kristalu. Sustav koji smo koristili za rast ovih filmova donio sam sa sobom iz MIT Lincoln Laboratory, gdje koristimo visokopročišćene materijale kako bismo smanjili nečistoće do neprimjetnih granica. To je savršen alat za istraživanje ovog istraživanja."

Slobodan tok
Tim je uzgojio tanke filmove ternarnog tetradimita, svaki otprilike 100 nanometara tanak. Zatim su testirali elektronska svojstva filma tražeći kvantne oscilacije Shubnikov-de Haas — fenomen koji su otkrili fizičari Lev Shubnikov i Wander de Haas, koji su otkrili da električna vodljivost materijala može oscilirati kada je izložen jakom magnetskom polju pri niskim temperaturama. Ovaj učinak se javlja jer elektroni materijala popunjavaju specifične energetske razine koje se mijenjaju kako se magnetsko polje mijenja.

Takve kvantne oscilacije mogu poslužiti kao potpis elektronske strukture materijala i načina na koji se elektroni ponašaju i međusobno djeluju. Najznačajnije za MIT tim, oscilacije mogu odrediti mobilnost elektrona materijala: Ako oscilacije postoje, to mora značiti da se električna otpornost materijala može mijenjati, a prema tome, elektroni mogu biti mobilni i lako teći.

Tim je tražio znakove kvantnih oscilacija u svojim novim filmovima, prvo ih izlažući ultrahladnim temperaturama i jakom magnetskom polju, zatim puštajući električnu struju kroz film i mjereći napon duž njegovog puta, dok su podešavali magnetsko polje gore i dolje.

Hang Chi,  kaže: "Ispostavilo se, na naše veliko zadovoljstvo i uzbuđenje, da električna otpornost materijala oscilira. Odmah vam to govori da ima vrlo visoku mobilnost elektrona."

Tim procjenjuje da ternarni tetradimitni tanki film pokazuje mobilnost elektrona od 10.000 cm2/V-s — najveću mobilnost ikad izmjerenu za ternarni tetradimitni film. Tim sumnja da rekordna mobilnost filma ima veze s njegovim niskim brojem nedostataka i nečistoća, koje su uspjeli minimizirati svojim preciznim strategijama rasta. Što je manje nedostataka u materijalu, to manje prepreka elektron susreće, i slobodnije može teći.

Jagadeesh Moodera kaže: "Ovo pokazuje da je moguće napraviti veliki korak naprijed, kada pravilno kontroliramo ove složene sustave. Ovo nam govori da smo na pravom putu i imamo pravi sustav za daljnji napredak, za daljnje usavršavanje ovog materijala do još tanjih filmova i bliskih spajanja za upotrebu u budućim spintroničkim i nosivim termoelektričnim uređajima."

Ovo istraživanje djelomično su podržali Armijski istraživački ured, Nacionalna znanstvena zaklada, Ured za pomorska istraživanja, Kanadski program istraživačkih stolica i Kanadski prirodoslovni i inženjerski istraživački savjet.

Izvor: Massachusetts Institute of Technology

Erstellungszeitpunkt: 02 Juli, 2024
Hinweis für unsere Leser:
Das Portal Karlobag.eu bietet Informationen zu täglichen Ereignissen und Themen, die für unsere Community wichtig sind. Wir betonen, dass wir keine Experten auf wissenschaftlichen oder medizinischen Gebieten sind. Alle veröffentlichten Informationen dienen ausschließlich Informationszwecken.
Bitte betrachten Sie die Informationen auf unserem Portal nicht als völlig korrekt und konsultieren Sie immer Ihren eigenen Arzt oder Fachmann, bevor Sie Entscheidungen auf der Grundlage dieser Informationen treffen.
Unser Team ist bestrebt, Sie mit aktuellen und relevanten Informationen zu versorgen und wir veröffentlichen alle Inhalte mit großem Engagement.
Wir laden Sie ein, Ihre Geschichten aus Karlobag mit uns zu teilen!
Ihre Erfahrungen und Geschichten über diesen wunderschönen Ort sind wertvoll und wir würden sie gerne hören.
Sie können sie gerne senden an uns unter karlobag@karlobag.eu.
Ihre Geschichten werden zum reichen kulturellen Erbe unseres Karlobag beitragen.
Vielen Dank, dass Sie Ihre Erinnerungen mit uns teilen!

AI Lara Teč

AI Lara Teč ist eine innovative KI-Journalistin des Portals Karlobag.eu, die sich auf die Berichterstattung über die neuesten Trends und Errungenschaften in der Welt der Wissenschaft und Technologie spezialisiert hat. Mit ihrem Fachwissen und ihrem analytischen Ansatz liefert Lara tiefgreifende Einblicke und Erklärungen zu den komplexesten Themen und macht diese für alle Leser zugänglich und verständlich.

Expertenanalyse und klare Erklärungen
Lara nutzt ihr Fachwissen, um komplexe wissenschaftliche und technologische Themen zu analysieren und zu erklären und konzentriert sich dabei auf deren Bedeutung und Auswirkungen auf das tägliche Leben. Ob es um die neuesten technologischen Innovationen, Forschungsdurchbrüche oder Trends in der digitalen Welt geht, Lara bietet gründliche Analysen und Erklärungen und beleuchtet wichtige Aspekte und mögliche Auswirkungen für die Leser.

Ihr Führer durch die Welt der Wissenschaft und Technik
Laras Artikel sollen Sie durch die komplexe Welt der Wissenschaft und Technologie führen und klare und präzise Erklärungen liefern. Ihre Fähigkeit, komplexe Konzepte in verständliche Teile zu zerlegen, macht ihre Artikel zu einer unverzichtbaren Ressource für jeden, der über die neuesten wissenschaftlichen und technologischen Entwicklungen auf dem Laufenden bleiben möchte.

Mehr als KI – Ihr Fenster in die Zukunft
AI Lara Teč ist nicht nur Journalistin; Es ist ein Fenster in die Zukunft und bietet Einblicke in neue Horizonte von Wissenschaft und Technologie. Ihre fachkundige Anleitung und tiefgreifende Analyse helfen den Lesern, die Komplexität und Schönheit der Innovationen, die unsere Welt prägen, zu verstehen und zu schätzen. Bleiben Sie mit Lara auf dem Laufenden und lassen Sie sich von den neuesten Entwicklungen inspirieren, die die Welt der Wissenschaft und Technologie zu bieten hat.