Postavke privatnosti

New Hybrid Cooling System: A Revolutionary Technology for University of Missouri Data Centers

Researcher Chanwoo Park from the University of Missouri is developing an innovative two-phase hybrid cooling system, which significantly reduces energy consumption in data centers and improves efficiency, ensuring sustainability for future AI technologies.

New Hybrid Cooling System: A Revolutionary Technology for University of Missouri Data Centers
Photo by: Domagoj Skledar/ arhiva (vlastita)

Artificial intelligence (AI) is currently a very topical subject, as are the data centers that drive this technology. Cooling these centers requires enormous amounts of energy.

As high-energy AI computers and devices become commonplace, the problem will only grow. That’s why researcher Chanwoo Park from the University of Missouri is developing a new cooling system that promises to drastically reduce energy demands.

Cooling and chip manufacturing
“Cooling and chip manufacturing go hand in hand,” said Park, a professor of mechanical and aerospace engineering at the Mizzou College of Engineering. “Without proper cooling, components overheat and stop working. Energy-efficient data centers will be key to the future of AI computing.”

Solving future problems
Data centers are large buildings full of servers that contain computer chips for storing and processing data. They are the basic computing centers that power websites, mobile applications, and cloud data.

They are also huge energy consumers. In 2022, data centers used more than 4% of the total electricity in the USA, with 40% of that energy spent on cooling equipment. As demands for data centers increase, even greater amounts of energy will be needed.

To mitigate this, the US Department of Energy has awarded more than $40 million to researchers to find new ways to cool data centers. Park recently received nearly $1.65 million from this initiative, known as COOLERCHIPS.

Currently, data centers are cooled using fans to move air or liquid that carries heat away from the computer racks.

Park and his team are developing a two-phase cooling system designed to efficiently remove heat from server chips through phase change, such as liquid evaporation into vapor in a thin, porous layer. The system can operate passively without consuming energy when less cooling is needed. Even in active mode, where a pump is used, only a negligible amount of energy is consumed.

Efficient heat transfer
“The liquid moves in different directions and evaporates on a thin metal surface,” Park said. “Using this boiling surface, we can achieve very efficient heat transfer with low thermal resistance.”

The system also includes a mechanical pump that activates to absorb more heat only when needed.

Early tests show that two-phase cooling techniques drastically reduce the amount of energy needed to cool equipment.

The team is currently building a cooling system designed for easy connection and disconnection within server racks. Park hopes it will be in use in the next decade, just as AI-powered computers become mainstream.

“Eventually, there will be limitations to current cooling systems, and that’s a problem,” Park said. “We’re trying to stay ahead of the curve and have something ready and available for the future of AI computing. This is a futuristic cooling system.”

Park’s work aligns with the goals of the Center for Energy Innovation, a building under construction on campus to enable interdisciplinary researchers to address the challenges posed by growing energy needs and the rapid growth of AI technology. The idea is to leverage advanced technology to optimize energy production, storage, and efficiency.

“The center will allow us to explore additional ideas and innovations around energy-efficient processes,” Park said. “These are complex problems that require different areas of expertise. I look forward to future collaborations.”

Additionally, Park’s cooling method involves an advanced capillary structure within the evaporator that allows the creation of thin layers of liquid that easily evaporate, enabling efficient heat removal from server chips with minimal thermal resistance.

The system uses a hybrid design that combines capillary and mechanical pumping. Within the evaporator, the capillary structure creates thin layers of liquid that evaporate for efficient heat removal from server chips with minimal thermal resistance. Mechanical pumping simultaneously enhances the cooling capacity by absorbing significant amounts of heat.

“Using this hybrid design, we are creating an ideal solution for cooling data centers,” said Park. “It’s very challenging and requires a lot of analysis and development. It involves advanced manufacturing techniques, but it’s designed to handle large heat fluxes with low energy consumption. It’s very close to the ideal cooling system we are looking for.”

Park is five months into a three-year project. The ultimate goal is to find a system that can be commercialized and mass-produced for use in high-tech data centers. He is optimistic that the partnership with the government and industry will result in significant commercialization.

“Thanks to collaboration with national laboratories and industry partners, we are making significant advances,” Park emphasized, highlighting the successful achievement of initial milestones. “Ultimately, I am optimistic that this cooling system will be adopted in data centers to improve overall efficiency.”

The University of Missouri is committed to addressing the challenges posed by growing energy needs and the rapid growth of artificial intelligence through the Center for Energy Innovation, a building that will bring together engineers, agronomists, physicists, chemists, and public policy experts to provide sustainable solutions for the future and strengthen domestic energy supplies.

Source: University of Missouri

Find accommodation nearby

Creation time: 28 July, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.