Postavke privatnosti

Optical properties of high-temperature superconductors: discoveries about the anisotropy of Bi2212 crystals

Research into the optical properties of the Bi2212 high-temperature superconductor reveals key insights into the mechanisms of superconductivity, opening the way to room superconductivity and a revolution in technology.

Optical properties of high-temperature superconductors: discoveries about the anisotropy of Bi2212 crystals
Photo by: Domagoj Skledar/ arhiva (vlastita)

The phenomenon of superconductivity, which allows materials to conduct electricity without resistance, has intrigued scientists worldwide for decades. These properties, which typically manifest at extremely low temperatures, promise revolutionary applications in areas such as energy, transportation, and medical technology. Particularly interesting are high-temperature superconductors based on copper oxides, such as Bi2Sr2CaCu2O8+δ (Bi2212). This compound has been a key focus of research for years, and the latest experiments are providing a deeper understanding of the optical properties of these materials, opening up new possibilities for achieving superconductivity at room temperature.


What is superconductivity and why is it important?


Superconductivity is a state of matter where electric current flows without any resistance, meaning there are no energy losses in the form of heat. The discovery of this phenomenon in 1911 revolutionized physics but also presented numerous challenges for practical application in the real world. While classical superconductors require cooling with liquid helium to near absolute zero temperatures, high-temperature superconductors based on copper oxides can operate at relatively higher temperatures, often with the use of liquid nitrogen. This makes them much more practical for widespread applications, ranging from high-efficiency power grids to advanced medical devices such as magnetic resonance imaging.


The role of optical properties in Bi2212 research


One of the key challenges in understanding high-temperature superconductivity lies in studying the two-dimensional copper-based crystal planes, known as CuO2 planes. These planes play a crucial role in the superconducting properties of the material. Optical properties, such as light reflection and transmission, provide valuable insights into the electronic interactions within these planes. Previous reflection measurements have shown that Bi2212 exhibits significant optical anisotropy, meaning variability in optical properties depending on the direction of light transmission. However, transmission measurements, which allow for more direct study of the material's internal properties, have been rare so far.


Recent research: a step closer to room-temperature superconductivity


A team of scientists from Waseda University in Japan, led by Professor Dr. Toru Asahi, conducted pioneering research using the transmission of ultraviolet and visible light on monocrystals of Bi2212 doped with lead. Their work focused on understanding the mechanisms that cause optical anisotropy in this material. Doping with lead partially replaces bismuth in the crystal structure, suppressing the so-called mismatched modulation – periodic variations in the arrangement of atoms that disrupt the material's symmetry.


Research results


The results show that increased lead content significantly reduces optical anisotropy, allowing for more accurate measurements of other optical parameters, such as optical activity and circular dichroism. This discovery provides key insights into the nature of the pseudogap and superconducting phases of the material, which are crucial aspects for understanding high-temperature superconductivity.


Wider significance for science and technology


Achieving superconductivity at room temperature has been the holy grail of material science for decades. Such a development would have enormous implications in various industries. For example, superconducting cables could eliminate energy losses in power grids, while superconducting magnets could enable much faster and more efficient transport systems, such as maglev trains. In medicine, advanced superconducting materials could further improve technologies like magnetic resonance imaging and other diagnostic methods.


Future steps


While there is still a long way to go before practical applications of room-temperature superconductors, research like this provides a solid foundation for further advances. The focus on the optical properties of Bi2212, as well as the possibilities for manipulating its crystal structure, continues to reveal new insights into the mechanisms of high-temperature superconductivity.

Source: Waseda University

Find accommodation nearby

Creation time: 15 December, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.