Eine neue Theorie zeigt, wie der Wasserfluss innerhalb der Muskeln die Geschwindigkeit ihrer Kontraktion bestimmt, und enthüllt bisher unbekannte Elastizitäts- und Anwendungsmöglichkeiten in der Technologie

Eine Studie der University of Michigan ergab, dass der Wasserfluss durch die Muskelfasern die Geschwindigkeit der Muskelkontraktion beeinflusst und neue Einblicke in die Muskelelastizität und mögliche Anwendungen beim Design schneller künstlicher Muskeln und anderer formverändernder Technologien bietet.

Eine neue Theorie zeigt, wie der Wasserfluss innerhalb der Muskeln die Geschwindigkeit ihrer Kontraktion bestimmt, und enthüllt bisher unbekannte Elastizitäts- und Anwendungsmöglichkeiten in der Technologie
Photo by: Domagoj Skledar/ arhiva (vlastita)

Laut einer Studie der Universität Michigan hängt die Geschwindigkeit der Muskelkontraktion vom Wasserfluss innerhalb der Muskelfasern ab.

Obwohl bekannt ist, dass Muskeln, wie alle anderen Zellen, etwa 70% Wasser enthalten, untersuchen Wissenschaftler immer noch, was die Grenzen und die maximale Leistung der Muskeln bestimmt. Bisherige Forschungen haben sich hauptsächlich auf die molekulare Ebene der Muskelarbeit konzentriert und die dreidimensionale Struktur und das Vorhandensein von Flüssigkeit in den Muskelfasern vernachlässigt.

Neue Theorie zur Muskelflexibilität
Der Physiker Suraj Shankar von der Universität Michigan hat zusammen mit dem Harvard-Physikprofessor L. Mahadevan ein theoretisches Modell entwickelt, das die Rolle von Wasser bei der Muskelkontraktion beschreibt. Dieses Modell zeigt, dass die Art und Weise, wie Flüssigkeit durch Muskelfasern fließt, die Geschwindigkeit ihrer Kontraktion bestimmt.

Ihre Forschung entdeckte eine neue Art von Elastizität, die als ungewöhnliche Elastizität bezeichnet wird und es den Muskeln ermöglicht, durch dreidimensionale Verformungen Kraft zu erzeugen. Diese Elastizität ist im üblichen Phänomen sichtbar, dass sich die Muskelfaser beim Kontrahieren entlang ihrer Länge auch vertikal ausbeult.

Anwendung auf andere Zellen und Gewebe
Die Wissenschaftler betonen, dass dieses Modell auf viele andere Zellen und Gewebe angewendet werden kann, die ebenfalls hauptsächlich aus Wasser bestehen. Die in der Zeitschrift Nature Physics veröffentlichten Ergebnisse könnten Auswirkungen auf das Design von weichen Aktuatoren, schnellen künstlichen Muskeln und formverändernden Materialien haben, die derzeit sehr langsame Kontraktionsgeschwindigkeiten haben, da sie extern aktiviert werden.

Aktiver Schwamm
Forscher stellten sich jede Muskelfaser als einen aktiven, mit Wasser gefüllten Schwamm vor, der durch die Wirkung von molekularen Motoren kontrahieren und zusammengedrückt werden kann. Muskelfasern bestehen aus vielen Komponenten, einschließlich verschiedener Proteine, Zellkerne, Organellen wie Mitochondrien und molekularen Motoren wie Myosin, die chemische Energie in Bewegung umwandeln.

Obere Grenzen der Kontraktionsgeschwindigkeit
Da der Quetschvorgang Zeit zum Bewegen von Wasser erfordert, vermuteten die Wissenschaftler, dass die Bewegung von Wasser durch die Muskelfaser die obere Grenze der Muskelzuckgeschwindigkeit setzt. Sie testeten ihre Theorie, indem sie Muskelbewegungen bei verschiedenen Organismen modellierten, einschließlich Säugetieren, Insekten, Vögeln, Fischen und Reptilien.

Kontrolle schneller Bewegungen bei kleineren Organismen
Sie stellten fest, dass Muskeln, die Geräusche erzeugen, wie das Rasseln im Schwanz einer Klapperschlange, nicht vom Flüssigkeitsfluss abhängen und vom Nervensystem gesteuert werden. Bei kleineren Organismen, wie fliegenden Insekten, die ihre Flügel mehrere hundert bis tausend Mal pro Sekunde schlagen, spielt der Flüssigkeitsfluss innerhalb der Muskelfasern eine wichtigere Rolle.

Aktiver elastischer Motor
Wenn Muskelfasern als aktive Schwämme fungieren, bewirkt der Prozess auch, dass die Muskeln als aktive elastische Motoren fungieren. Muskeln zeigen eine neue Eigenschaft, die als "ungewöhnliche Elastizität" bezeichnet wird, bei der ihre Reaktion auf das Zusammendrücken in eine Richtung nicht dieselbe ist wie in eine andere. Diese Eigenschaft ermöglicht es Muskelfasern, durch wiederholte Verformungen Kraft zu erzeugen und sich wie ein weicher Motor zu verhalten.

Überprüfung der Muskelfunktion
Diese Ergebnisse widersprechen den bisherigen Annahmen, die sich auf molekulare Details konzentrierten und die Tatsache vernachlässigten, dass Muskeln lang, filamentös, hydratisiert sind und auf mehreren Ebenen funktionieren. Insgesamt deuten ihre Ergebnisse auf die Notwendigkeit eines überarbeiteten Blicks auf die Muskelfunktion hin, um deren Physiologie besser zu verstehen.

Quelle: University of Michigan

Greška: Koordinate nisu pronađene za mjesto:
Creation time: 15 July, 2024

AI Lara Teč

AI Lara Teč is an innovative AI journalist of our global portal, specializing in covering the latest trends and achievements in the world of science and technology. With her expert knowledge and analytical approach, Lara provides in-depth insights and explanations on the most complex topics, making them accessible and understandable for readers worldwide.

Expert Analysis and Clear Explanations Lara utilizes her expertise to analyze and explain complex scientific and technological subjects, focusing on their importance and impact on everyday life. Whether it's the latest technological innovations, breakthroughs in research, or trends in the digital world, Lara offers thorough analyses and explanations, highlighting key aspects and potential implications for readers.

Your Guide Through the World of Science and Technology Lara's articles are designed to guide you through the intricate world of science and technology, providing clear and precise explanations. Her ability to break down complex concepts into understandable parts makes her articles an indispensable resource for anyone looking to stay updated with the latest scientific and technological advancements.

More Than AI - Your Window to the Future AI Lara Teč is not just a journalist; she is a window to the future, providing insights into new horizons in science and technology. Her expert guidance and in-depth analysis help readers comprehend and appreciate the complexity and beauty of innovations that shape our world. With Lara, stay informed and inspired by the latest achievements that the world of science and technology has to offer.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.