Postavke privatnosti

A revolutionary method of turning seawater into drinking water could solve a global crisis

In a period of climate change and population growth, access to drinking water is becoming a key issue. Red flow technology offers an innovative solution for desalination of seawater, ensuring the availability of drinking water and the storage of renewable energy, which can help billions of people facing shortages.

A revolutionary method of turning seawater into drinking water could solve a global crisis
Photo by: Domagoj Skledar/ arhiva (vlastita)

Revolutionary method of converting seawater into drinking water could solve the global crisis


In a period of increasingly intense climate change and rapid population growth, access to drinking water is becoming one of the most critical issues for the global community. It is precisely in this context that scientists around the world are working on the development of innovative technologies that could ensure the availability of drinking water for billions of people who will face shortages. A recent discovery in the field of desalination, the use of redox flow technology (RFD), could prove crucial in providing safe drinking water in many parts of the world. This new technology not only offers a solution for desalination but also for storing renewable energy, opening the door to a future where water and energy are available and sustainable.


New approach to desalination: Redox flow technology


Redox flow desalination (RFD) is a new method that converts seawater into drinking water using electrochemical processes that enable efficient separation of salt from seawater. The system works by dividing incoming seawater into two streams - one saline and one desalinated. In the process, the saline solution is treated through a membrane system that separates cations and anions, yielding clean drinking water. The use of ion-exchange membranes, such as cationic or anionic, allows for the separation of ions and electrolytes, resulting in two separate streams: saline and clean water.


One of the key advantages of RFD technology is its ability to store excess energy from renewable sources such as solar or wind power. This technology also functions in reverse, converting stored chemical energy back into electrical energy, making the desalination system a multifunctional solution for energy and water independence. This system ensures sustainability in both the production of drinking water and the use of clean energy sources, contributing to global efforts to reduce dependence on fossil fuels and expand renewable energy sources.


Sustainability and efficiency of the new technology


In addition to promising better access to drinking water, RFD systems provide greater flexibility and scalability compared to conventional desalination methods such as reverse osmosis. Reverse osmosis requires high pressure, thus consuming a significant amount of energy, which greatly increases desalination costs, while RFD systems are designed to reduce energy requirements, making the entire process more efficient and cost-effective. According to research conducted at New York University, optimizing fluid flow in the RFD system increased the salt removal rate by 20%, while simultaneously reducing energy consumption. This positions the technology as a more environmentally friendly alternative with great potential to reduce global energy consumption.


It is particularly important to emphasize how this technology can play a key role in areas facing chronic water shortages. Coastal regions or islands could benefit the most from RFD desalination, as such a system could continuously produce drinking water using natural energy sources, ensuring long-term stability in water supply. For example, the transfer of electrons from the cathode to the redox molecule enables the extraction of sodium ions, which are then transported and returned to the concentrated stream, while fresh water remains clean for consumption. This ability to adapt to demand conditions significantly contributes to the sustainability of the entire system.


Inspiration from nature: Solar power for desalination


Another team of researchers at the University of Waterloo has developed a solar desalination system inspired by natural processes of evaporation and condensation. This system uses a foamy material coated with special polymers that absorb sunlight and convert it into thermal energy, allowing continuous evaporation of seawater and condensation into fresh drinking water. The system can produce up to 20 liters of drinking water per square meter, which meets basic needs for drinking and hygiene according to the recommendations of the World Health Organization.


It is important to note that this solar desalination system not only produces water but also prevents the accumulation of salt on surfaces that would otherwise reduce the efficiency of the process. The inspiration for this system comes from the natural way trees transport water from the roots to the canopy, and the research team has applied this strategy to optimize desalination and reduce maintenance needs.


Global potential to tackle water shortages


With the fact that as much as 66% of the world's population suffers from uncertainty regarding drinking water, innovations like RFD technology and solar desalination represent hope for millions of people. Climate change and accelerated population growth exacerbate the problem of water scarcity, and desalination is becoming key to ensuring a stable supply. Further research is focused on reducing the costs of these technologies, making desalination more accessible on a global scale.


Researchers emphasize that the future of drinking water is closely linked to the development of sustainable desalination methods that integrate renewable energy sources. Utilizing redox flow as a multifunctional system for desalination and energy storage represents an important step towards a future where both water and energy are available to all, without further burdening the environment. This technology promises to integrate humanity into an environmentally sustainable world, where innovations not only meet basic needs but also contribute to environmental preservation.

Find accommodation nearby

Creation time: 01 November, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.