Postavke privatnosti

Innovative technology from Macquarie University uses acetic vapors to enhance UV sensors: A revolutionary method for flexible wearable devices and eco-friendly solutions

Researchers at Macquarie University have developed a new technology that uses acetic vapors to drastically improve UV sensors. This method enables the creation of flexible and efficient wearable devices, significantly enhancing the environmental friendliness and commercial viability of the sensors

Innovative technology from Macquarie University uses acetic vapors to enhance UV sensors: A revolutionary method for flexible wearable devices and eco-friendly solutions
Photo by: Domagoj Skledar/ arhiva (vlastita)

Researchers from Macquarie University have developed a revolutionary approach to creating ultraviolet (UV) sensors, allowing for more efficient and flexible wearable devices. This new technology, based on the use of acetic acid vapor, represents a significant advancement in the field of sensor systems, offering multiple advantages over traditional methods that require high temperatures.

The study, published in the journal Small, highlights how acetic acid vapor, essentially vinegar vapor, can significantly improve the performance of sensors based on zinc oxide nanoparticles. Traditional methods of producing these sensors require prolonged thermal treatment, but the research team from Macquarie University discovered that similar effects can be achieved through a simple chemical process at room temperature.

New technology that changes the game
The key aspect of this innovation is the exposure of the sensors to acetic acid vapors, which causes the zinc oxide nanoparticles on the sensor's surface to bond together, creating bridges through which energy can pass. This process enables sensors to become incredibly sensitive – up to 128,000 times more sensitive compared to untreated sensors. The sensors also retain the ability to precisely detect UV light without interference, making them reliable and long-lasting solutions for various applications.

Professor Noushin Nasiri, head of the Nanotechnology Laboratory at Macquarie University, points out that this simple yet effective process is transformative for the sensor industry. Traditional methods involve baking sensors at high temperatures, which limits application possibilities in flexible and sensitive materials. However, the new technique allows for the creation of sensors that are not only functional but also environmentally friendly.

Detailed fabrication process
The fabrication process of these advanced sensors begins with spraying a zinc solution into a flame, which creates a fine mist of zinc oxide nanoparticles that deposit on platinum electrodes. This thin, sponge-like film is then exposed to acetic acid vapors for a period of five to twenty minutes, depending on the desired level of particle connectivity. The acetic acid vapor induces changes in the film's structure, allowing particles to bond together and thus ensure a smooth flow of electrons through the sensor. Additionally, the particles remain small enough to effectively detect light.

Scientists conducted extensive testing of different formulations before finding the perfect balance in the process. Water alone was not strong enough to bond the particles, while pure vinegar was too harsh, destroying the sensor structure. Ideal results were achieved when sensors were exposed to vapors for about 15 minutes, while longer exposure caused excessive structural changes that compromised performance.

Broad applications and commercial potential
The new vapor processing technique at room temperature offers numerous advantages over current high-temperature processing methods. It allows the use of heat-sensitive materials and flexible substrates and is also more cost-effective and environmentally friendly. The process can be easily commercialized, making it an ideal solution for large-scale production of wearable UV sensors.

Nasiri emphasizes that this method has the potential for wider application across different types of sensors. By using simple chemical vapor treatments instead of high-temperature processes, the technology can be applied to various functional materials, nanostructures, and substrates, opening doors for the development of new sensor solutions in different industries.

This innovation, arriving at a time of increasing demand for flexible and environmentally friendly technologies, represents a significant step forward in sensor development, particularly for wearable devices requiring high sensitivity and low energy consumption.

Source: Macquarie University

Find accommodation nearby

Creation time: 03 September, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.