Postavke privatnosti

New advances in quantum computing: mit researchers develop revolutionary algorithm to effectively factorize large numbers with reduced memory requirements

Researchers at mit have introduced a new algorithm for quantum computers that combines speed and memory efficiency. This progress could significantly accelerate the application of quantum computing in breaking complex encrypted systems, which could have far-reaching implications for the future of cryptography.

New advances in quantum computing: mit researchers develop revolutionary algorithm to effectively factorize large numbers with reduced memory requirements
Photo by: Domagoj Skledar/ arhiva (vlastita)

Recently sent email was likely protected using an established encryption method that relies on the fact that even the fastest computer could not simply factorize very large numbers.

However, quantum computers open a new dimension in computing, promising to quickly break complex cryptographic systems that would take classical computers millions of years to crack. This new capability is based on a quantum factoring algorithm first proposed by Peter Shor in 1994. His work, although revolutionary, has not yet been fully realized due to technical challenges in building sufficiently powerful quantum computers.

Research in the field of quantum computing science continues intensively, and scientists around the world are working to improve Shor's algorithm to make it suitable for use on smaller and currently available quantum computers. Last year, computer scientist Oded Regev from New York University proposed a significant theoretical improvement to Shor's algorithm, which reduces the number of required quantum gates but increases memory demands.

MIT researchers, building on Regev's results, proposed a new algorithm that combines the speed advantages of Regev's approach with the memory efficiency of Shor's algorithm. This new algorithm is not only fast but also requires fewer quantum building blocks (qubits) and has greater resistance to quantum noise, making it much more feasible for implementation in real-world conditions.

Advances in quantum computing
Quantum computers differ from classical ones in their ability to use quantum bits, or qubits, which can be in multiple states simultaneously. This allows quantum computers to process vast amounts of data in parallel, significantly speeding up the solving of complex mathematical problems.

However, building large quantum computers capable of running algorithms like Shor's remains a major challenge. The most advanced quantum computers currently have around 1,100 qubits, which is far below the 20 million qubits needed to run Shor's algorithm on numbers relevant to modern cryptography.

Regev's algorithm represents a significant step forward as it reduces the number of required quantum gates, but the problem of increased memory demand remains. Qubits, which are the fundamental element of quantum computers, are prone to degradation over time, meaning their use must be optimized to achieve maximum efficiency.

New methods and challenges
MIT researchers have developed a method that uses Fibonacci numbers for exponentiation, significantly reducing the need for squaring numbers. This method requires only two quantum memory units, reducing the need for a large number of qubits and enabling complex operations with less quantum memory.

This approach resembles a game of ping-pong, where the initial value of a digit is transferred between two quantum registers, multiplying at each step. Additionally, the MIT team has developed techniques for error correction in quantum operations, which is crucial for the reliable application of these algorithms in real quantum computers.

Perspectives on quantum cryptography
Although the work of MIT researchers is a significant step forward, many challenges remain before quantum computers can threaten existing cryptographic systems like RSA. Current estimates suggest that improvements need to be applicable to numbers significantly larger than 2,048 bits, raising the question of whether this new method will be effective enough for modern encryption standards.

Despite this, the development of new algorithms and techniques for optimizing quantum computing operations lays the foundation for a future in which quantum cryptography will play a key role in protecting digital communications. Researchers believe that further improvements, combined with technological advancements, will enable the practical application of quantum computers in cryptography within the coming decades.

The MIT team intends to continue research aimed at further optimizing the algorithm, with the hope that it can one day be tested on real quantum computers. The ultimate goal is to develop encryption systems resistant to future quantum threats, ensuring the long-term security of digital data.

Source: Massachusetts Institute of Technology

Find accommodation nearby

Creation time: 28 August, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.