Propriétés optiques des supraconducteurs à haute température : découvertes sur l'anisotropie des cristaux Bi2212

La recherche sur les propriétés optiques du supraconducteur haute température Bi2212 révèle des informations clés sur les mécanismes de la supraconductivité, ouvrant la voie à la supraconductivité ambiante et à une révolution technologique.

Propriétés optiques des supraconducteurs à haute température : découvertes sur l
Photo by: Domagoj Skledar/ arhiva (vlastita)

Le phénomène de la supraconductivité, qui permet aux matériaux de conduire l'électricité sans résistance, intrigue les scientifiques du monde entier depuis des décennies. Ces propriétés, qui se manifestent généralement à des températures extrêmement basses, promettent des applications révolutionnaires dans des domaines tels que l'énergie, les transports et la technologie médicale. Les supraconducteurs à haute température à base d'oxydes de cuivre, tels que Bi2Sr2CaCu2O8+δ (Bi2212), sont particulièrement intéressants. Ce composé est depuis des années un axe de recherche clé, et les dernières expériences permettent une compréhension plus approfondie des propriétés optiques de ces matériaux, ouvrant de nouvelles possibilités pour atteindre la supraconductivité à température ambiante.


Qu'est-ce que la supraconductivité et pourquoi est-elle importante ?


La supraconductivité est un état de la matière où le courant électrique circule sans aucune résistance, ce qui signifie qu'il n'y a pas de pertes d'énergie sous forme de chaleur. La découverte de ce phénomène en 1911 a révolutionné la physique, mais a également présenté de nombreux défis pour son application pratique dans le monde réel. Alors que les supraconducteurs classiques nécessitent un refroidissement avec de l'hélium liquide à des températures proches du zéro absolu, les supraconducteurs à haute température à base d'oxydes de cuivre peuvent fonctionner à des températures relativement plus élevées, souvent avec l'utilisation d'azote liquide. Cela les rend beaucoup plus pratiques pour des applications étendues, allant des réseaux électriques à haute efficacité aux dispositifs médicaux avancés tels que l'imagerie par résonance magnétique.


Le rôle des propriétés optiques dans la recherche sur Bi2212


L'un des principaux défis pour comprendre la supraconductivité à haute température réside dans l'étude des plans cristallins bidimensionnels à base de cuivre, appelés plans CuO2. Ces plans jouent un rôle clé dans les propriétés supraconductrices du matériau. Les propriétés optiques, telles que la réflexion et la transmission de la lumière, fournissent des informations importantes sur les interactions électroniques au sein de ces plans. Les mesures de réflexion ont montré que Bi2212 présente une anisotropie optique marquée, c'est-à-dire une variabilité des propriétés optiques en fonction de la direction de la lumière. Cependant, les mesures de transmission, qui permettent une étude plus directe des propriétés internes du matériau, ont été rares jusqu'à présent.


Dernières recherches : un pas de plus vers la supraconductivité à température ambiante


Une équipe de scientifiques de l'Université de Waseda au Japon, dirigée par le professeur Toru Asahi, a mené des recherches pionnières en utilisant la transmission de lumière ultraviolette et visible sur des monocristaux de Bi2212 dopés au plomb. Leur travail s'est concentré sur la compréhension des mécanismes qui causent l'anisotropie optique dans ce matériau. Le dopage au plomb remplace partiellement le bismuth dans la structure cristalline, ce qui inhibe la modulation désaccordée – des variations périodiques dans l'agencement des atomes qui perturbent la symétrie du matériau.


Résultats de la recherche


Les résultats montrent qu'une teneur accrue en plomb réduit considérablement l'anisotropie optique, permettant des mesures plus précises d'autres paramètres optiques, tels que l'activité optique et le dichroïsme circulaire. Cette découverte fournit des informations clés sur la nature de la phase pseudogap et supraconductrice du matériau, qui sont des aspects cruciaux pour comprendre la supraconductivité à haute température.


Importance plus large pour la science et la technologie


Atteindre la supraconductivité à température ambiante représente le Saint Graal de la physique des matériaux depuis des décennies. Un tel développement aurait d'énormes implications dans de nombreuses industries. Par exemple, les câbles supraconducteurs pourraient éliminer les pertes d'énergie dans les réseaux électriques, tandis que les aimants supraconducteurs permettraient des systèmes de transport beaucoup plus rapides et plus efficaces, tels que les trains à lévitation magnétique. En médecine, les matériaux supraconducteurs avancés pourraient améliorer davantage les technologies d'imagerie par résonance magnétique et d'autres méthodes diagnostiques.


Prochaines étapes


Bien qu'il reste encore un long chemin à parcourir avant l'application pratique des supraconducteurs à température ambiante, des recherches comme celle-ci fournissent des bases solides pour de futures avancées. L'accent mis sur les propriétés optiques de Bi2212, ainsi que sur les possibilités de manipulation de sa structure cristalline, continue de révéler de nouveaux aperçus sur les mécanismes de la supraconductivité à haute température.

Source : Université Waseda

Creation time: 15 December, 2024
Note for our readers:
The Karlobag.eu portal provides information on daily events and topics important to our community. We emphasize that we are not experts in scientific or medical fields. All published information is for informational purposes only.
Please do not consider the information on our portal to be completely accurate and always consult your own doctor or professional before making decisions based on this information.
Our team strives to provide you with up-to-date and relevant information, and we publish all content with great dedication.
We invite you to share your stories from Karlobag with us!
Your experience and stories about this beautiful place are precious and we would like to hear them.
Feel free to send them to us at karlobag@ karlobag.eu.
Your stories will contribute to the rich cultural heritage of our Karlobag.
Thank you for sharing your memories with us!

AI Lara Teč

AI Lara Teč is an innovative AI journalist of the Karlobag.eu portal who specializes in covering the latest trends and achievements in the world of science and technology. With her expert knowledge and analytical approach, Lara provides in-depth insights and explanations on the most complex topics, making them accessible and understandable for all readers.

Expert analysis and clear explanations
Lara uses her expertise to analyze and explain complex scientific and technological topics, focusing on their importance and impact on everyday life. Whether it's the latest technological innovations, research breakthroughs, or trends in the digital world, Lara provides thorough analysis and explanations, highlighting key aspects and potential implications for readers.

Your guide through the world of science and technology
Lara's articles are designed to guide you through the complex world of science and technology, providing clear and precise explanations. Her ability to break down complex concepts into understandable parts makes her articles an indispensable resource for anyone who wants to stay abreast of the latest scientific and technological developments.

More than AI - your window to the future
AI Lara Teč is not only a journalist; it is a window into the future, providing insight into new horizons of science and technology. Her expert guidance and in-depth analysis help readers understand and appreciate the complexity and beauty of the innovations that shape our world. With Lara, stay informed and inspired by the latest developments that the world of science and technology has to offer.