Postavke privatnosti

The James Webb telescope reveals the secrets of trans-Neptunian objects and their chemical composition

Recent research using the James Webb Space Telescope has uncovered key chemical compounds on the surfaces of trans-Neptunian objects, providing the most detailed insight yet into their structure, evolution, and connection to the formation of the solar system.

The James Webb telescope reveals the secrets of trans-Neptunian objects and their chemical composition
Photo by: Domagoj Skledar/ arhiva (vlastita)

Deep in the cold and distant regions of the Solar System, beyond the orbit of Pluto, lie trans-Neptunian objects (TNOs), mysterious bodies that preserve crucial clues about the early history of our planetary system. The latest research, conducted using the James Webb Space Telescope (JWST), provides the most detailed insight yet into the composition, evolution, and interconnectedness of these icy worlds, revealing an extraordinary diversity of surface materials and chemical compounds.


Icy Worlds as Windows into the Past


Trans-Neptunian objects are small, icy bodies that have never formed into planets. Therefore, they act as time capsules that preserve molecular traces from the period of the formation of the Solar System. According to new data obtained by the JWST, scientists have for the first time been able to precisely determine the molecular compositions of the surfaces of these objects, including water ice, carbon dioxide, methanol, and complex organic molecules.


These compounds not only point to chemical processes in the early stages of the Solar System but also reveal how conditions such as temperature and distance from the Sun shaped their structure. Scientists have identified three main groups of TNOs, classified by the characteristics of their surface compositions, which they have named "Bowl," "Double Depression," and "Cliff."


Three Different Groups of TNOs


The first group, "Bowl," makes up about 25% of the observed objects and is characterized by a high concentration of crystalline water ice and dark, dusty surfaces. The second group, "Double Depression," which covers about 43% of the sample, shows distinct traces of carbon dioxide and organic molecules. The third group, called "Cliff," with 32% of the sample, contains complex organic molecules, methanol, and nitrogen-containing molecules.


These data provide crucial insight into the temperature boundaries within the protoplanetary disk of the Solar System, where different compounds could condense and persist. Each of these groups corresponds to specific conditions in certain regions of the disk, allowing scientists to recreate the scenario of the formation of these objects billions of years ago.


Centaur – A Bridge Between TNOs and the Inner Solar System


While TNOs remain in the distant parts of the Solar System, some of them, under the influence of gravitational interactions, migrate toward the inner regions, becoming so-called centaurs. These objects, located between Jupiter and Saturn, represent a transitional step between TNOs and comets. Research on centaurs conducted in parallel with TNO studies has revealed significant differences in their surface characteristics.


Centaurs show unique spectral signatures, including the presence of dusty regolith layers mixed with ice. These surfaces suggest that centaurs undergo significant changes during their journeys closer to the Sun, including heating, ice sublimation, and comet tail formation.


Unique Surface Features of Centaurs


Researchers have noted that two of the three classes of surface types of TNOs, "Bowl" and "Cliff," are also present among centaurs. However, a new category has emerged, called "Shallow Type," which is not present among TNOs. This new class is characterized by a high concentration of primitive cometary dust and a markedly low presence of volatile ices.


These discoveries suggest that centaurs are not a homogeneous group but represent dynamic objects that undergo different stages of evolution depending on their orbital paths and distance from the Sun. Their unique characteristics offer key clues about how TNOs migrate, evolve, and eventually become comets.


New Perspectives and Future Research


This research not only reveals new details about the chemical composition and surface evolution of TNOs and centaurs but also opens the door for future studies. Scientists now have a more precise insight into the molecular processes that shape these bodies, as well as their connections to the protoplanetary disk from which they originated.


The results suggest that carbon dioxide, rather than water ice, is the dominant compound on the surfaces of many TNOs, calling into question previous assumptions about the composition of the outer regions of the Solar System. Furthermore, the spectroscopic diversity of centaurs indicates the need for new models that can more accurately describe their evolutionary paths.


With ever more precise instruments like the James Webb Telescope, scientists will continue to study these distant worlds, seeking answers to questions about the formation, evolution, and future of our Solar System.

Source: University of Central Florida

Find accommodation nearby

Creation time: 21 December, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.