Deepfakes mit Augenanalyse erkennen: eine neue Methode der Hull University zur Identifizierung gefälschter Bilder

Neue Forschungen der Hull University zeigen, wie Deepfakes durch die Analyse von Reflexionen in den Augen mit astronomischen Methoden erkannt werden können. Diese innovative Technik gibt neue Hoffnung im Kampf gegen falsche Bilder.

Deepfakes mit Augenanalyse erkennen: eine neue Methode der Hull University zur Identifizierung gefälschter Bilder
Photo by: Domagoj Skledar/ arhiva (vlastita)

In einer Ära, in der die Erstellung von Bildern mit künstlicher Intelligenz (KI) der breiten Öffentlichkeit zugänglich geworden ist, wird das Erkennen gefälschter Bilder, insbesondere von Deepfakes, immer wichtiger. Neue Forschungen, die auf der Nationalen Astronomiekonferenz der Royal Astronomical Society in Hull vorgestellt wurden, zeigen, dass KI-generierte Deepfakes durch die Analyse der Augen ähnlich wie bei der Untersuchung von Galaxienbildern erkannt werden können.

Die Grundlage der Arbeit, die von dem Masterstudenten Adejumoke Owolabi an der Universität Hull erstellt wurde, liegt in den Reflexionen in den Augen der Menschen. Wenn die Reflexionen konsistent sind, ist das Bild wahrscheinlich echt. Wenn sie es nicht sind, handelt es sich höchstwahrscheinlich um einen Deepfake.

"Reflexionen in den Augen sind bei einer echten Person konsistent, aber bei einer gefälschten Person ungenau," betonte Kevin Pimbblet, Professor für Astrophysik und Direktor des Zentrums für Exzellenz in Datenwissenschaft, künstlicher Intelligenz und Modellierung an der Universität Hull.

Forscher analysierten die Lichtreflexionen in den Augen von Menschen auf realen und KI-generierten Bildern. Sie verwendeten dann Methoden, die üblicherweise in der Astronomie eingesetzt werden, um Reflexionen zu quantifizieren und die Konsistenz zwischen den Reflexionen des linken und des rechten Auges zu überprüfen.

Gefälschte Bilder weisen oft keine Konsistenz in den Reflexionen zwischen den Augen auf, während echte Bilder im Allgemeinen die gleichen Reflexionen in beiden Augen zeigen.

"Um die Form von Galaxien zu messen, analysieren wir, ob sie zentral kompakt, symmetrisch und wie glatt sie sind. Wir analysieren die Lichtverteilung," sagte Professor Pimbblet.

"Wir erkennen Reflexionen automatisch und führen ihre morphologischen Merkmale durch CAS [Konzentration, Asymmetrie, Glätte] und Gini-Indizes durch, um die Ähnlichkeit zwischen den linken und rechten Augen zu vergleichen.

Die Ergebnisse zeigen, dass Deepfakes bestimmte Unterschiede zwischen den Augenpaaren aufweisen."

Der Gini-Koeffizient wird üblicherweise verwendet, um zu messen, wie das Licht in einem Galaxienbild auf die Pixel verteilt ist. Diese Messung erfolgt, indem die Pixel, aus denen das Galaxienbild besteht, in aufsteigender Reihenfolge nach Fluss geordnet und dann mit dem verglichen werden, was von einer perfekt gleichmäßigen Flussverteilung erwartet würde.

Ein Gini-Wert von 0 zeigt eine Galaxie an, in der das Licht gleichmäßig über alle Pixel des Bildes verteilt ist, während ein Gini-Wert von 1 eine Galaxie anzeigt, bei der das gesamte Licht in einem Pixel konzentriert ist.

Das Team testete auch CAS-Parameter, ein Werkzeug, das ursprünglich von Astronomen entwickelt wurde, um die Lichtverteilung von Galaxien zu messen, um deren Morphologie zu bestimmen, stellte jedoch fest, dass sie keine erfolgreichen Prädiktoren für gefälschte Augen waren.

"Es ist wichtig zu beachten, dass dies keine magische Lösung zur Erkennung gefälschter Bilder ist," fügte Professor Pimbblet hinzu. "Es gibt falsch-positive und falsch-negative Ergebnisse; es wird nicht alles erkannt. Aber diese Methode gibt uns eine Grundlage, einen Angriffsplan, im Rennen zur Erkennung von Deepfakes."

Diese Arbeit stellt einen bedeutenden Schritt nach vorne bei der Entwicklung von Technologien zur Erkennung gefälschter Bilder dar. Da die Deepfake-Technologie weiter fortschreitet, wird es immer wichtiger, zuverlässige Methoden zur Unterscheidung von echten und gefälschten Bildern zu haben. Weitere Forschungen und Verfeinerungen dieser Methoden werden erwartet, um die Genauigkeit der Deepfake-Erkennung weiter zu verbessern und so zusätzlichen Schutz vor potenziellem Missbrauch zu bieten.

Die Entwicklung von Technologien zur Erkennung von Deepfakes hat breite Anwendungen, einschließlich Sicherheit, Journalismus und Justiz. In einer Welt, in der visuelle Informationen entscheidend sind, wird die Fähigkeit, gefälschte Bilder zu erkennen, zu einer unverzichtbaren Fähigkeit. Diese Ergebnisse betonen die Notwendigkeit eines interdisziplinären Ansatzes, der Wissen aus Astronomie, künstlicher Intelligenz und Forensik kombiniert, um den Herausforderungen der Deepfake-Ära effektiv zu begegnen.

Quelle: Royal Astronomical Society

Creation time: 29 July, 2024
Note for our readers:
The Karlobag.eu portal provides information on daily events and topics important to our community. We emphasize that we are not experts in scientific or medical fields. All published information is for informational purposes only.
Please do not consider the information on our portal to be completely accurate and always consult your own doctor or professional before making decisions based on this information.
Our team strives to provide you with up-to-date and relevant information, and we publish all content with great dedication.
We invite you to share your stories from Karlobag with us!
Your experience and stories about this beautiful place are precious and we would like to hear them.
Feel free to send them to us at karlobag@ karlobag.eu.
Your stories will contribute to the rich cultural heritage of our Karlobag.
Thank you for sharing your memories with us!

AI Lara Teč

AI Lara Teč is an innovative AI journalist of the Karlobag.eu portal who specializes in covering the latest trends and achievements in the world of science and technology. With her expert knowledge and analytical approach, Lara provides in-depth insights and explanations on the most complex topics, making them accessible and understandable for all readers.

Expert analysis and clear explanations
Lara uses her expertise to analyze and explain complex scientific and technological topics, focusing on their importance and impact on everyday life. Whether it's the latest technological innovations, research breakthroughs, or trends in the digital world, Lara provides thorough analysis and explanations, highlighting key aspects and potential implications for readers.

Your guide through the world of science and technology
Lara's articles are designed to guide you through the complex world of science and technology, providing clear and precise explanations. Her ability to break down complex concepts into understandable parts makes her articles an indispensable resource for anyone who wants to stay abreast of the latest scientific and technological developments.

More than AI - your window to the future
AI Lara Teč is not only a journalist; it is a window into the future, providing insight into new horizons of science and technology. Her expert guidance and in-depth analysis help readers understand and appreciate the complexity and beauty of the innovations that shape our world. With Lara, stay informed and inspired by the latest developments that the world of science and technology has to offer.