Postavke privatnosti

New study brings hope for safer opioid drugs with fewer side effects and reduced risk of addiction

Scientists have developed an experimental opioid drug RO76 that reduces pain with fewer side effects and a reduced risk of fatal overdose. This innovation could significantly improve the treatment of pain with minimal adverse consequences for patients.

New study brings hope for safer opioid drugs with fewer side effects and reduced risk of addiction
Photo by: Domagoj Skledar/ arhiva (vlastita)

Opioid drugs provide people with relief from debilitating pain but come with dangers: risk of addiction, unpleasant withdrawal symptoms, and potentially fatal overdose. In a study published in ACS Central Science, scientists have identified a strategy for designing safer opioids. They demonstrated that an experimental opioid, which binds to an unconventional site on the receptor, suppresses pain in animal models with fewer side effects, particularly those associated with fatal overdoses.

Opioid drugs exploit the body's natural pain relief system by activating opioid receptors on nerve cells in the brain. Although these drugs are meant to help people, they can sometimes cause harm. People taking opioids can become physically dependent on them, where sudden discontinuation can trigger withdrawal symptoms, such as muscle aches, nausea, and vomiting. Additionally, opioids slow and shallow breathing, a side effect that can be fatal.

Attempts to design safer opioids have mainly focused on identifying molecules that bind to the same site on the receptor, known as the active site, where natural pain-relief signals bind. In earlier research, scientists found a molecule called C6 guano, which can activate the opioid receptor when it binds outside the active site. C6 guano interacts with a location within the opioid receptor that usually responds to sodium ions. Despite promising effects, C6 guano has a significant drawback: it cannot cross the blood-brain barrier that protects the organ. Therefore, a team led by Susruta Majumdar, Jay McLaughlin, Haoqing Wang, and Ruth Huttenhain set out to improve this discovery by identifying a similar molecule with the potential to travel from the bloodstream to the opioid receptors in the brain.

To find an alternative that also binds to the opioid receptor, researchers synthesized and evaluated 10 compounds with chemistry that could allow passage through the blood-brain barrier. During initial testing in cells, they identified the most promising candidate derived from fentanyl, called RO76. By capturing molecules near the activated receptor, the team showed that RO76 produces a signal within cells that is different from those triggered by classical opioids, such as morphine.

They then assessed the compound's efficacy in mice. In these experiments, RO76 seemed as effective as morphine in suppressing pain. But when comparing the opioids' effects on the animals' breathing rate, they found that RO76 slows breathing much less, suggesting it may not be as deadly as morphine. Likewise, when mice were given an opioid-blocking drug, those chronically taking RO76 experienced fewer withdrawal symptoms than those taking morphine. Moreover, the team found that, when administered orally, the new fentanyl derivative has similar, though somewhat lower, pain-suppressing effects compared to injection under the skin of animals. Researchers say these results suggest that RO76 has the potential for development as an oral medication for humans.

One of the key steps in researching safer opioids is identifying molecules that can cross the blood-brain barrier. This barrier is a protective layer of cells that prevents many substances from entering the brain, thus ensuring the stability of the brain's internal environment. Identifying compounds that can cross this barrier presents a significant challenge in pharmacology.

In recent research, a team of scientists from the University of Washington's Center for Clinical Pharmacology, led by Susruta Majumdar, conducted detailed tests of the compound RO76 on animal models. The results showed that RO76 can significantly reduce pain without causing severe side effects like respiratory depression, which is common with traditional opioids. Additionally, the compound showed a lower potential for causing addiction compared to morphine.

Funding for this research was provided by the National Institutes of Health and the Pharmaceutical Research and Manufacturers of America through postdoctoral fellowships. Two authors also acknowledged financial interests related to biopharmaceutical companies. These results represent a significant advancement in the research of safer opioids and offer the potential for developing new drugs that can provide effective pain relief with minimal risk of severe side effects.

Source: American Chemical Society

Find accommodation nearby

Creation time: 25 July, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.