Postavke privatnosti

The latest discovery of the DNA repair process offers key insights for the development of advanced cancer therapies, focusing on tex264 and research on zebrafish

A new DNA repair process has been discovered with the help of the tex264 protein that could bring revolutionary advances in cancer treatment. Scientists have uncovered key mechanisms that could enhance the effectiveness of chemotherapy and improve personalized therapies for patients

The latest discovery of the DNA repair process offers key insights for the development of advanced cancer therapies, focusing on tex264 and research on zebrafish
Photo by: Domagoj Skledar/ arhiva (vlastita)

The latest research in the field of DNA repair brings revolutionary insights that could enhance cancer treatment, particularly in cases of colorectal cancer, the second leading cause of cancer-related mortality worldwide. Scientists from prestigious institutions such as the University of Oxford and Nanyang Technological University in Singapore have discovered a key mechanism in repairing damaged DNA, a process known as nucleophagy, which holds significant potential for improving chemotherapy outcomes in cancer patients.


DNA damage can be caused by numerous factors, including UV radiation, environmental chemicals, and natural biological processes. Classical DNA repair mechanisms are focused on repairing within the nucleus and mitochondria, where the genetic material resides. However, the latest discovery shows that damaged DNA can be removed from the nucleus via nucleophagy. This process allows for the elimination of damaged DNA fragments through cellular waste systems, preserving genome integrity and extending cell life.


A new repair pathway: nucleophagy and the role of the TEX264 protein


The key player in this process is the TEX264 protein, which recognizes DNA damage and directs it to cellular organelles responsible for degradation—lysosomes. TEX264 facilitates the removal of damaged DNA fragments, which is crucial for cell survival under chemotherapy stress. This mechanism ensures that DNA damage is removed before it causes mutations that could lead to tumor formation.


Studies have shown that patients with elevated levels of TEX264 protein have better responses to therapy, particularly to colorectal cancer treatment with chemotherapy involving topoisomerase I inhibitors, such as FOLFIRI therapy. These insights allow for predicting the effectiveness of therapy based on the levels of this protein in tumor cells, opening the door to more precise therapeutic approaches. Scientists believe that targeting this protein could weaken tumor cells and improve treatment outcomes.


Zebrafish: a key model for studying cellular processes


In studies using zebrafish, organisms whose genome is remarkably similar to humans, scientists have been able to show how the inactivation of the TEX264 protein leads to the accumulation of DNA damage. This model allows for the tracking of cellular processes in real-time, and thanks to transparent embryos and external fertilization, researchers can easily observe how cells respond to DNA damage. Zebrafish provide a simple and effective model for investigating DNA damage mechanisms and their impact on disease development.


These zebrafish have been used in conjunction with advanced techniques such as biochemical analysis, mass spectrometry, and bioinformatics to precisely determine how TEX264 participates in DNA repair. Researchers have also utilized tissue samples from patients with colorectal cancer to validate findings from zebrafish, demonstrating that this process is crucial for maintaining genome stability in the context of therapies.


Key implications for future treatment


One of the most important discoveries is the potential for blocking TEX264 as a strategy to enhance chemotherapy. Combining inhibitors of this protein with existing drugs could further weaken tumor cells and prevent them from repairing DNA damage, thereby increasing therapy effectiveness. This discovery not only opens doors to new approaches for treating colorectal cancer but could also extend to other types of tumors, including pancreatic, ovarian, breast, and lung cancers.


The research results represent a crucial step forward in understanding how cells maintain DNA integrity under therapy stress and offer hope for patients whose cancer shows resistance to standard treatments. Future studies will focus on further exploring the role of nucleophagy in response to chemotherapy drugs, aiming to confirm these findings in the context of other types of cancer.


Laboratory research and advanced technologies


At the Ruđer Bošković Institute, researchers have established a top-tier laboratory for studying zebrafish, utilizing advanced technologies such as the CRISPR-Cas system for genetic manipulation. This allows for the creation of new strains of zebrafish that are crucial for investigating human diseases. Zebrafish are also in compliance with EU commission guidelines for the use of animal models in scientific research, thereby reducing the reliance on more complex models like rodents. This model offers invaluable assistance in biomedical research, particularly for diseases such as cancer, neurodegenerative diseases, and heart problems.


The potential for utilizing zebrafish in laboratories worldwide further emphasizes their value in modern medicine. Scientists around the globe are increasingly recognizing the importance of this model organism, indicating a broader application of research techniques that have already been developed in laboratories such as the Ruđer Bošković Institute.

Source: Ruđer Bošković Institute

Find accommodation nearby

Creation time: 11 October, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.