Postavke privatnosti

A revolutionary method of photon-phonon coupling enables advances in quantum technology and secure communications

Scientists from the Max Planck Institute for Light Science have developed a resilient method of coupling photons and phonons, opening up new opportunities in quantum communications and computing. Their method uses Brillouin scattering and allows operation at higher temperatures, reducing costs and increasing applicability.

A revolutionary method of photon-phonon coupling enables advances in quantum technology and secure communications
Photo by: Domagoj Skledar/ arhiva (vlastita)

Scientists from the Max Planck Institute for the Science of Light (MPL) have made significant progress in quantum technology by demonstrating an efficient way of coupling photons with acoustic phonons. This method shows exceptional resistance to external disturbances, which is often a challenge in quantum systems. Their research was published in the journal "Physical Review Letters".


Quantum Coupling: The Foundation of Quantum Technologies


Quantum coupling allows the state of one particle to instantaneously affect the state of another, regardless of the distance between them. This phenomenon is crucial for the development of secure quantum communications and advanced quantum computers. Traditionally, coupling is achieved between photons through nonlinear optical processes. However, researchers at MPL have succeeded in coupling photons with phonons, quasiparticles that represent sound waves, using Brillouin scattering.


Brillouin Scattering: The Bridge Between Light and Sound


Brillouin scattering is a nonlinear optical effect that enables interaction between light and sound waves within a material. Through this process, photons and phonons can be linked, creating hybrid quantum systems. This method provides a stable and efficient platform for quantum applications, especially in environments where external disturbances are present.


Resistance to External Disturbances


One of the main challenges in quantum technologies is sensitivity to external disturbances that can disrupt quantum coupling. The method developed at MPL demonstrates high resistance to such disturbances, which is crucial for practical applications in quantum communications and computing.


Application in Quantum Communications


The coupling of photons and phonons opens new possibilities for developing quantum communication systems. Phonons, due to their nature, can serve as quantum memory, while photons enable the transmission of information over long distances. This combination can lead to more efficient and secure communication channels.


The Future of Quantum Computing


In quantum computing, the coupling of different quantum states is essential for information processing. Integrating photons and phonons can enable the development of new quantum logic circuits that are more resistant to disturbances and more efficient in operation.


Practical Implementation


Researchers have demonstrated that their method can be applied in optical fibers and photonic integrated chips. This flexibility allows for wide application in existing technologies and facilitates integration into future quantum systems.


Operation at Higher Temperatures


One of the significant successes of this method is the ability to operate at temperatures higher than standard approaches, which often require expensive equipment like diluted refrigerators. The method developed at MPL can be used in conditions with temperatures up to tens of Kelvin, reducing costs and simplifying implementation.

Source: Max Planck Institute for the Science of Light

Find accommodation nearby

Creation time: 19 November, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.