Postavke privatnosti

HKUST scientists discover key microstructural factors to improve perovskite solar cells

The HKUST research team, led by prof. ZHOU Yuanyuan, identified the presence of concavity on the surfaces of crystalline grains of perovskite thin films, which significantly affects the efficiency and stability of solar cells. These discoveries open up new opportunities to improve the performance of solar cells through the chemical elimination of these concavities.

HKUST scientists discover key microstructural factors to improve perovskite solar cells
Photo by: Domagoj Skledar/ arhiva (vlastita)

Scientists from the School of Engineering at the Hong Kong University of Science and Technology (HKUST) have recently made a significant discovery in the field of perovskite solar cells. The research team, led by Prof. ZHOU Yuanyuan, identified the presence of concavities on the surfaces of crystal grains in perovskite thin films. These microstructural irregularities significantly affect the properties and reliability of solar cells, making them a key factor in their efficiency.

Perovskite solar cells, known for their outstanding power conversion efficiency (PCE), are already recognized as a potential replacement for traditional silicon solar cells. They offer several advantages, including lower production costs, sustainable manufacturing, and high adaptability in terms of transparency and color. Despite these advantages, the long-term stability of perovskite cells under various conditions remains a challenge for commercialization.

To address this issue, the HKUST research team focused on the microstructural aspects of the material. They found that concavities on the surfaces of crystal grains disrupt the structural continuity at the interface of perovskite films, limiting the efficiency and stability of the cells. By using the surfactant molecule potassium tridecafluorohexane-1-sulfonate, the team was able to eliminate these concavities, resulting in significant improvements in the performance of perovskite solar cells.

New method to improve efficiency
Through the application of the surfactant, the research team manipulated the evolution of stress and ion diffusion during the formation of perovskite films. This enabled improved energy retention efficiency during standardized thermal cycling, damp heat, and maximum power point tracking tests.

Prof. Zhou emphasized the importance of understanding the microstructure of perovskite materials to achieve maximum solar cell efficiency. "The structure and geometry of individual crystal grains are the source of performance for perovskite semiconductors and solar cells. By discovering the concavities on the grain surface, understanding their effects, and using chemical engineering to adjust their geometry, we are pioneering a new way of making perovskite solar cells with maximum efficiency and stability," said Prof. Zhou.

In addition to the discovery of concavities, the team used atomic force microscopy to closely examine the structural properties of perovskite films. Concavities are typically hidden microstructural factors that are often overlooked but have a significant impact on the performance of solar cells.

Zhang Yalan, a doctoral student in Prof. Zhou's research group, highlighted the importance of microstructure for perovskite solar cells and other optoelectronic devices. "Under Prof. Zhou's guidance, we have developed various new characterization methods and approaches to gather data to better understand the microstructure of perovskites," said Zhang.

Furthermore, the research team plans to continue developing and applying their findings to enhance the commercial viability of perovskite solar cells. The introduction of new techniques and improvements in the manufacturing process could lead to significant progress in this field, enabling wider use of perovskite cells across different industries.

Perovskite solar cells represent an extraordinary technology that could revolutionize the way we produce and use solar energy. With continuous research and improvements, the potential for this technology is immense, providing a more sustainable and efficient energy source for the future.

Source: Hong Kong University of Science and Technology

Find accommodation nearby

Creation time: 21 July, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.