Innovativer Kunststoff-Recycling-Prozess ebnet den Weg für eine Kreislaufwirtschaft

Innovativer Prozess zur Kunststoffabfall-Recycling wandelt Polyethylen und Polypropylen in chemische Baustellenblöcke um und ermöglicht eine Kreislaufwirtschaft

Wissenschaftler der Universität Kalifornien, Berkeley, haben einen katalytischen Prozess entwickelt, der Polyethylen und Polypropylen effektiv abbaut, wodurch Abfälle in neue Kunststoffmaterialien recycelt werden können und die Notwendigkeit fossiler Brennstoffe erheblich reduziert wird

Innovativer Prozess zur Kunststoffabfall-Recycling wandelt Polyethylen und Polypropylen in chemische Baustellenblöcke um und ermöglicht eine Kreislaufwirtschaft
Photo by: Domagoj Skledar/ arhiva (vlastita)

Wissenschaftler der University of California, Berkeley, haben einen innovativen chemischen Prozess entwickelt, der Kunststoffabfälle effektiv in wertvolle chemische Bausteine für die Herstellung neuer Kunststoffprodukte umwandeln kann. Dieser katalytische Prozess ermöglicht den Abbau dominanter Kunststoffarten im Abfall—Polyethylen und Polypropylen—zu ihren grundlegenden chemischen Komponenten, was uns dem Ziel einer Kreislaufwirtschaft für Kunststoffe erheblich näher bringt.

Der Prozess verwendet zwei wichtige Katalysatoren: Natrium auf Aluminiumoxid und Wolframoxid auf Siliziumdioxid. Der erste Katalysator baut die Polymere ab und hinterlässt ein Ende mit einer reaktiven Doppelbindung, während der zweite Katalysator diese Bindung nutzt, um Kohlenstoff hinzuzufügen und ein Propenmolekül zu erzeugen. Propen ist eine der grundlegenden Zutaten zur Herstellung neuer Polymere, was die Wiederverwendung von Kunststoffabfällen ohne den Bedarf an neuen fossilen Brennstoffen ermöglicht.

Dieser neue Prozess bietet zahlreiche Vorteile gegenüber früheren Methoden. Vor allem eliminiert er die Notwendigkeit komplexer und teurer Katalysatoren, die in früheren Untersuchungen verwendet wurden. Durch den Austausch dieser Katalysatoren gegen billigere, feste Katalysatoren kann ein kontinuierlicher Prozess ermöglicht werden, was bedeutet, dass die Katalysatoren wiederverwendet werden können, wodurch die Kosten gesenkt und die Effizienz gesteigert wird. Diese Technologie vermeidet auch die Notwendigkeit, Wasserstoff zu entfernen, um eine Doppelbindung in Polymeren zu bilden, was ein wichtiger Schritt in früheren Kunststoffabbauverfahren war.

Die Anwendung dieser Methode könnte erhebliche Auswirkungen auf die Reduzierung von Kunststoffabfällen weltweit haben, die heute größtenteils auf Deponien, in Ozeanen oder durch Verbrennung enden und damit weiter zur Emission von Treibhausgasen beitragen. Schätzungen zufolge bestehen etwa zwei Drittel des Kunststoffabfalls nach dem Verbrauch aus Polyethylen und Polypropylen, und der größte Teil dieses Abfalls wird derzeit in Produkte mit geringem Wert wie Blumentöpfe und Plastikbesteck recycelt.

Einer der wichtigsten Innovationen dieses Verfahrens ist die Fähigkeit, Kunststoff auf molekularer Ebene abzubauen, was die Herstellung von Produkten mit der gleichen Qualität wie die aus neuem, unbenutztem Material ermöglicht. Dieser Prozess ermöglicht potenziell die Herstellung neuer Kunststoffprodukte ohne Qualitätseinbußen, was ein entscheidender Schritt in Richtung eines nachhaltigeren Umgangs mit Kunststoffabfällen ist.

Darüber hinaus ist die neue Methode deutlich widerstandsfähiger gegen Verunreinigungen, die die Effizienz des Abbaus verringern könnten. Während kleine Mengen an Verunreinigungen wie PET und PVC die Effizienz verringern können, haben die meisten Verunreinigungen keine signifikanten Auswirkungen, was bedeutet, dass der Prozess auch mit weniger sauberem Kunststoffabfall effektiv arbeiten kann. Dies ist entscheidend für die Kommerzialisierung und breitere Anwendung der Technologie.

Wissenschaftler glauben, dass diese Technologie zur Schaffung kommerzieller Anlagen zur Zersetzung von Kunststoff in Bausteine für neue Materialien führen könnte, was die Abhängigkeit von fossilen Brennstoffen erheblich reduzieren und die Menge an Kunststoff, die in die Umwelt gelangt, verringern könnte.

Dieses Projekt wurde vom US-Energieministerium finanziert, und die Forschungsergebnisse werden in der wissenschaftlichen Zeitschrift Science veröffentlicht. Neben Professor John Hartwig, der die Forschung leitete, waren auch die Doktoranden Richard J. Conk, Jules Stahler, Jake Shi, Natalie Lefton und John Brunn sowie Forscher des Lawrence Berkeley National Laboratory beteiligt.

FINDEN SIE EINE UNTERKUNFT IN DER NÄHE

Erstellungszeitpunkt: 03 September, 2024

AI Lara Teč

AI Lara Teč ist eine innovative KI-Journalistin unseres globalen Portals, spezialisiert auf die Berichterstattung über die neuesten Trends und Errungenschaften in der Welt der Wissenschaft und Technologie. Mit ihrem Fachwissen und analytischen Ansatz bietet Lara tiefgehende Einblicke und Erklärungen zu den komplexesten Themen, wodurch sie für Leser weltweit zugänglich und verständlich werden.

Fachkundige Analyse und Klare Erklärungen Lara nutzt ihre Expertise, um komplexe wissenschaftliche und technologische Themen zu analysieren und zu erklären, wobei sie sich auf deren Bedeutung und Einfluss auf das tägliche Leben konzentriert. Ob es sich um die neuesten technologischen Innovationen, Durchbrüche in der Forschung oder Trends in der digitalen Welt handelt, Lara bietet gründliche Analysen und Erklärungen, die die wichtigsten Aspekte und potenziellen Auswirkungen für die Leser hervorheben.

Ihr Führer durch die Welt der Wissenschaft und Technologie Larastiche Artikel sind darauf ausgelegt, Sie durch die komplexe Welt der Wissenschaft und Technologie zu führen und dabei klare und präzise Erklärungen zu bieten. Ihre Fähigkeit, komplexe Konzepte in verständliche Teile zu zerlegen, macht ihre Artikel zu einer unverzichtbaren Ressource für alle, die über die neuesten wissenschaftlichen und technologischen Fortschritte informiert bleiben möchten.

Mehr als KI - Ihr Fenster in die Zukunft AI Lara Teč ist nicht nur eine Journalistin; sie ist ein Fenster in die Zukunft und bietet Einblicke in neue Horizonte der Wissenschaft und Technologie. Ihre fachkundige Führung und tiefgehende Analyse helfen den Lesern, die Komplexität und Schönheit der Innovationen, die unsere Welt gestalten, zu verstehen und zu schätzen. Mit Lara bleiben Sie über die neuesten Errungenschaften informiert und inspiriert, die die Welt der Wissenschaft und Technologie zu bieten hat.

HINWEIS FÜR UNSERE LESER
Karlobag.eu bietet Nachrichten, Analysen und Informationen zu globalen Ereignissen und Themen, die für Leser weltweit von Interesse sind. Alle veröffentlichten Informationen dienen ausschließlich zu Informationszwecken.
Wir betonen, dass wir keine Experten in den Bereichen Wissenschaft, Medizin, Finanzen oder Recht sind. Daher empfehlen wir, vor der Entscheidungsfindung auf Basis der Informationen unseres Portals, sich mit qualifizierten Experten zu beraten.
Karlobag.eu kann Links zu externen Drittanbieterseiten enthalten, einschließlich Affiliate-Links und gesponserten Inhalten. Wenn Sie über diese Links ein Produkt oder eine Dienstleistung kaufen, können wir eine Provision erhalten. Wir haben keine Kontrolle über die Inhalte oder Richtlinien dieser Seiten und übernehmen keine Verantwortung für deren Genauigkeit, Verfügbarkeit oder für Transaktionen, die Sie über diese Seiten tätigen.
Wenn wir Informationen über Veranstaltungen oder Ticketverkäufe veröffentlichen, beachten Sie bitte, dass wir weder direkt noch über Vermittler Tickets verkaufen. Unser Portal informiert ausschließlich über Veranstaltungen und Kaufmöglichkeiten über externe Verkaufsplattformen. Wir verbinden Leser mit Partnern, die Ticketverkaufsdienste anbieten, garantieren jedoch nicht deren Verfügbarkeit, Preise oder Kaufbedingungen. Alle Ticketinformationen werden von Dritten bezogen und können ohne vorherige Ankündigung Änderungen unterliegen. Wir empfehlen, die Verkaufsbedingungen beim gewählten Partner vor einem Kauf sorgfältig zu überprüfen, da das Portal Karlobag.eu keine Verantwortung für Transaktionen oder Verkaufsbedingungen von Tickets übernimmt.
Alle Informationen auf unserem Portal können ohne vorherige Ankündigung geändert werden. Durch die Nutzung dieses Portals stimmen Sie zu, dass Sie die Inhalte auf eigenes Risiko lesen.