Postavke privatnosti

Decline in mercury emissions in recent decades: positive signs of pollution reduction despite global estimates

New research shows a significant decline in mercury emissions caused by human activity, with atmospheric concentrations declining by 10% between 2005 and 2020, although global estimates suggest otherwise.

Decline in mercury emissions in recent decades: positive signs of pollution reduction despite global estimates
Photo by: Domagoj Skledar/ arhiva (vlastita)

Mercury emissions caused by human activity: new findings


The latest scientific research reveals encouraging conclusions about the reduction of mercury emissions, one of the most dangerous pollutants, which enters the atmosphere as a byproduct of human activities. Analyses have shown that during the period from 2005 to 2020, the concentration of mercury in the atmosphere decreased by approximately 10%, contrary to what global emissions inventories indicated through their estimates. These discoveries are based on data collected from 51 monitoring stations for atmospheric mercury in the northern hemisphere, and researchers employed advanced modeling methods to better understand what caused this positive trend.


Although global inventories estimate pollution emissions based on average emission rates that include activities like coal burning or gold mining, these models often fail to account for actual measurements coming from the field. This highlights the need for constant monitoring of real data to improve prediction models and policies for future emissions. Such results have important implications for scientists and policymakers seeking better insights into global pollution trends and the health of our planet.


What did the monitoring results show?


Studies have shown that the reduction in atmospheric mercury concentration is likely linked to lower emissions from human sources, including reduced mercury use in industrial processes, progress in pollution control, and a shift to cleaner energy sources. For example, a significant reduction in mercury use in small-scale gold mining represents an important step towards decreasing global emissions. Gold mining, especially in underdeveloped areas, uses mercury to extract gold from soil, contributing a large percentage of total mercury emissions into the atmosphere.


Although the Minamata Convention, an international treaty signed in 2013 aimed at reducing mercury emissions, was a key step forward, actual data indicates that emissions are declining even faster than some global inventories had assumed. However, challenges remain in accurately modeling mercury emissions due to the specific properties of this metal. Mercury is the only metal that is liquid at room temperature, which means it easily enters the atmosphere and can be re-emitted from natural "reservoirs" such as oceans and soil. These factors make precise estimation of mercury emissions more complex.


Research methods and modeling challenges


Scientists in this study utilized two main modeling methods for emissions: biogeochemical box modeling and chemical transport modeling. Both methods allowed researchers to conduct thousands of simulations to assess various emission scenarios and better understand the impact of meteorological and regional variations on mercury concentration in the atmosphere. Although the results of these models suggested several possible factors, the reduction of emissions from human sources was the most likely reason for the recorded decline in atmospheric mercury.


However, global inventories still show discrepancies in emissions estimates. One reason for this discrepancy may be the lack of data from certain countries, especially those where gold mining occurs in remote and poorly accessible areas. Additionally, monitoring stations for atmospheric mercury are less developed compared to those for other pollutants like methane, complicating accurate tracking of global emissions trends.


The need for long-term monitoring


The results of this study emphasize the importance of long-term monitoring of emissions and the establishment of more monitoring stations for mercury worldwide. Scientists also note that further research is necessary for better estimation of emissions from products containing mercury, such as thermometers or other equipment. These products, when discarded, can release mercury into the atmosphere over long periods, further complicating emissions tracking.


In the future, international collaboration among scientists is expected to enable better estimation of emissions and help achieve global goals for reducing mercury pollution. Given the results so far, optimism is growing that emissions will continue to decrease, but more work is needed to ensure ongoing reductions in mercury emissions and better protection of human health and the environment.

Source: Massachusetts Institute of Technology

Find accommodation nearby

Creation time: 10 October, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.