New stretchable lithium-ion batteries ensure stability

New fully stretchable lithium-ion batteries with expandable electrolytes up to 5000% ensure stable energy storage capacity

Researchers have developed a lithium-ion battery with stretchy components, including an electrolyte layer that can expand up to 5000%, retaining capacity after nearly 70 charging and discharging cycles. This progress can improve wearable health devices.

New fully stretchable lithium-ion batteries with expandable electrolytes up to 5000% ensure stable energy storage capacity
Photo by: Domagoj Skledar/ arhiva (vlastita)

When you think of a battery, stretchability is probably not the first thing that comes to mind. However, this ability will be crucial for integration into flexible electronics, which are becoming increasingly popular in wearable health devices. Researchers from ACS Energy Letters have introduced a lithium-ion battery with fully stretchable components, including an electrolyte layer that can expand by an incredible 5000%, while retaining energy storage capacity even after nearly 70 charge and discharge cycles.

Electronics that can bend and stretch require batteries with similar characteristics. Most scientists who have attempted to create such batteries have used fabrics with conductive properties or rigid components bent into stretchable shapes, similar to origami. However, for a truly stretchable battery, every part - from the electrodes that collect charge to the middle electrolyte layer that balances the charge - must be elastic. Previous prototypes of batteries with moderate elasticity had complex assembly processes or limited energy storage capacity, especially during long-term use with repetitive charge and discharge cycles. This can be due to poor bonding between the electrolyte layer and the electrodes or the instability of a liquid electrolyte that can move when the battery changes shape. Instead of using a liquid electrolyte, Wen-Yong Lai and his colleagues decided to embed the electrolyte in a polymer layer placed between two flexible electrode film layers, creating a fully solid, stretchable battery.

To make electrodes for the fully elastic battery, the team spread a thin film of conductive paste containing silver nanowires, carbon black, and lithium-based cathode or anode materials onto a plate. They then applied a layer of polydimethylsiloxane, a flexible material often used in contact lenses, on top of the paste. Directly on top of this film, researchers added lithium salt, a highly conductive liquid, and ingredients to create a stretchable polymer. Activated by light, these ingredients formed a solid, rubbery layer capable of stretching up to 5000% of its original length and transferring lithium ions. Finally, another electrode film was added on top of the layer, and the entire device was sealed with a protective layer.

Comparing the design of the solid stretchable battery with a similar device using a traditional liquid electrolyte, the new version showed approximately six times the average charging capacity during rapid charging. Likewise, the solid battery maintained a more stable capacity over 67 charge and discharge cycles. In other prototypes made with solid electrodes, the polymer electrolyte maintained stable operation over 1000 cycles, with a 1% capacity drop in the first 30 cycles, compared to a 16% drop for the liquid electrolyte. Although improvements are still needed, this new method of creating fully stretchable, solid batteries could be a promising step forward for wearable or implantable devices that bend and move with the body.

The authors acknowledged financial support from the National Key Research and Development Program of China; the National Natural Science Foundation of China; the Jiangsu Provincial Natural Science Foundation; the Zhejiang Provincial Key Laboratory of Flexible Electronics Foundation; the Jiangsu Specially-Appointed Professor Program; the NUPT "1311 Project" and Science Foundation; the China Postdoctoral Science Foundation; the State Key Laboratory of Organic Electronics and Information Displays, NJUPT Project; and the NJUPT Natural Science Foundation.

Source: American Chemical Society

FIND ACCOMMODATION NEARBY

Creation time: 18 July, 2024

AI Lara Teč

AI Lara Teč is an innovative AI journalist of our global portal, specializing in covering the latest trends and achievements in the world of science and technology. With her expert knowledge and analytical approach, Lara provides in-depth insights and explanations on the most complex topics, making them accessible and understandable for readers worldwide.

Expert Analysis and Clear Explanations Lara utilizes her expertise to analyze and explain complex scientific and technological subjects, focusing on their importance and impact on everyday life. Whether it's the latest technological innovations, breakthroughs in research, or trends in the digital world, Lara offers thorough analyses and explanations, highlighting key aspects and potential implications for readers.

Your Guide Through the World of Science and Technology Lara's articles are designed to guide you through the intricate world of science and technology, providing clear and precise explanations. Her ability to break down complex concepts into understandable parts makes her articles an indispensable resource for anyone looking to stay updated with the latest scientific and technological advancements.

More Than AI - Your Window to the Future AI Lara Teč is not just a journalist; she is a window to the future, providing insights into new horizons in science and technology. Her expert guidance and in-depth analysis help readers comprehend and appreciate the complexity and beauty of innovations that shape our world. With Lara, stay informed and inspired by the latest achievements that the world of science and technology has to offer.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.