Postavke privatnosti

New fault study brings groundbreaking insights into earthquake prediction

Scientists have developed an innovative technique that analyzes curved scratches on faults, providing key information about past and future earthquakes, and potentially saving lives.

New fault study brings groundbreaking insights into earthquake prediction
Photo by: Domagoj Skledar/ arhiva (vlastita)

Seismologists around the world are developing advanced methods that could significantly improve the ability to predict earthquakes, and the latest research provides insight into where destructive earthquakes might originate, how they might spread, and where they could cause the greatest damage. A new method of studying fault planes, developed in collaboration with American and New Zealand scientists, could become a crucial tool in modeling and reducing the impacts of future earthquakes.


Studying Fault Planes: Key to Understanding Past and Future Earthquakes


Fault planes, structures formed as a result of movements in the Earth's crust, contain many invisible traces of earthquakes. Scientists have discovered that curved scratches on these planes, which had long been overlooked, can provide crucial information about past earthquakes. These scratches, similar to tire marks on asphalt after a race, reveal the direction from which the earthquake arrived at a specific point. Applying this method allows researchers to reconstruct the origin and spread of past seismic activities.


According to a study published in the journal Geology, scientists have for the first time shown how these scratches can serve as "fingerprints" of past earthquakes, allowing for detailed analyses and more precise predictions for the future. The pioneering work was led by geologist Nic Barth from the University of California Riverside, who emphasizes that these curved marks can reveal not only the direction of the earthquake but also its strength and potential spread direction.


Alpine Fault in New Zealand: A Natural Laboratory


The Alpine Fault in New Zealand has proven ideal for testing this method due to its specific seismic history. This fault, known for nearly regularly causing large earthquakes every 250 years, provided data about the last major earthquake from 1717. Research showed that this earthquake began in the southern part of the fault and spread northward, a scenario for which models predict significantly stronger shaking in populated areas.


Additionally, the research revealed that large earthquakes could begin at any end of the fault, which changes the previous understanding and opens new possibilities for analyzing other seismically active areas worldwide. These discoveries are particularly important for New Zealand but also globally, as they allow for the application of this method on various faults around the world.


California: Focus on the San Andreas and San Jacinto Faults


California, known for its seismic activity, particularly along the San Andreas Fault, could benefit the most from this technique. The direction of earthquake spread plays a crucial role in determining the intensity of shaking and the time the population has to react. For example, a large earthquake that would start in the southern part of the San Andreas Fault, near Salton Sea, and spread northward could direct destructive energy toward densely populated areas such as Los Angeles.


With proper application of this method, experts believe that early warning systems could provide Los Angeles residents with up to a minute's warning before shaking begins. This extra minute could mean saving thousands of lives by enabling evacuation, shutting down dangerous systems, and reducing damage.


A New Dimension in Assessing Seismic Risk


The method of analyzing curved scratches has already been implemented in computer models simulating earthquake spread. These models, combined with existing techniques such as electromagnetic monitoring of changes in Earth's ionosphere, could significantly improve the understanding of seismic activities. Scientists have already begun applying this technique to faults in California with the aim of creating a comprehensive earthquake prediction system.


Global Application and Future Challenges


Discoveries from the Alpine Fault provide a foundation for research in other seismically active areas. Scientists worldwide, including those in Japan, Turkey, and Indonesia, are already showing interest in applying this method to their own fault systems. Moreover, the method opens the possibility for historical analysis of seismic events, allowing for a better understanding of earthquake frequency and intensity over the centuries.


While scientists hope this method will help save lives and reduce damage, the challenge remains in its real-world application and integration with existing early warning systems. Nonetheless, the enthusiasm within the scientific community clearly indicates that we are one step closer to a more precise understanding of earthquakes and their consequences.

Source: University of California

Find accommodation nearby

Creation time: 15 December, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.