Postavke privatnosti

The IBS research team is making significant progress in the development of ultra-miniaturized transistors with 1D metals as brass electrodes

A new method for epitaxial growth of 1D metallic materials less than 1nm wide has been implemented by a research team led by JO Moon-Ho of the Centre for Van der Waals Quantum Solids (IBS), developing new structures for 2D semiconductor logic circuits.

The IBS research team is making significant progress in the development of ultra-miniaturized transistors with 1D metals as brass electrodes
Photo by: Domagoj Skledar/ arhiva (vlastita)

The research team led by Director JO Moon-Ho of the Center for Van der Waals Quantum Solids at the Institute for Basic Science (IBS) has implemented a new method for achieving epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Specifically, they used 1D metals as the bram electrode of an ultra-miniaturized transistor.

Integrated devices based on two-dimensional (2D) semiconductors, which exhibit excellent properties even at the ultimate thickness limit down to the atomic level, are a major focus of basic and applied research worldwide. However, the realization of such ultra-miniaturized transistor devices that can control electron movement within a few nanometers, let alone the development of a manufacturing process for these integrated circuits, faces significant technical challenges.

The degree of integration in semiconductor devices is determined by the width and control performance of the bram electrode, which controls the flow of electrons in the transistor. In conventional semiconductor manufacturing processes, reducing the bram length below a few nanometers is impossible due to lithography resolution limitations. To solve this technical problem, the research team utilized the fact that the mirror twin boundary (MTB) of molybdenum disulfide (MoS₂), a 2D semiconductor, is a 1D metal with a width of only 0.4 nm. They used this as the bram electrode to overcome the limitations of the lithographic process.

In this study, the 1D MTB metallic phase was achieved by controlling the crystal structure of the existing 2D semiconductor at the atomic level, transforming it into 1D MTB. This represents a significant breakthrough not only for next-generation semiconductor technology but also for fundamental materials science, as it demonstrates the synthesis of new material phases through artificial control of crystal structures.

The International Roadmap for Devices and Systems (IRDS) by IEEE predicts that semiconductor node technology will reach around 0.5 nm by 2037, with transistor bram lengths of 12 nm. The research team demonstrated that the channel width modulated by an electric field applied from the 1D MTB bram can be less than 3.9 nm, which significantly exceeds futuristic predictions.

The 1D MTB-based transistor developed by the research team also offers advantages in circuit performance. Technologies like FinFET or Gate-All-Around, used for miniaturizing silicon semiconductor devices, suffer from parasitic capacitance due to their complex device structures, leading to instability in highly integrated circuits. In contrast, the 1D MTB-based transistor can minimize parasitic capacitance due to its simple structure and extremely narrow bram width.

Director JO Moon-Ho commented: "The 1D metal phase achieved by epitaxial growth is a new material process that can be applied to ultra-miniaturized semiconductor processes. It is expected to become a key technology for the development of various low-energy, high-performance electronic devices in the future."

This research was published on July 3 in the journal Nature Nanotechnology.

Source: Institute for Basic Science, Korea

Find accommodation nearby

Creation time: 05 July, 2024

Science & tech desk

Our Science and Technology Editorial Desk was born from a long-standing passion for exploring, interpreting, and bringing complex topics closer to everyday readers. It is written by employees and volunteers who have followed the development of science and technological innovation for decades, from laboratory discoveries to solutions that change daily life. Although we write in the plural, every article is authored by a real person with extensive editorial and journalistic experience, and deep respect for facts and verifiable information.

Our editorial team bases its work on the belief that science is strongest when it is accessible to everyone. That is why we strive for clarity, precision, and readability, without oversimplifying in a way that would compromise the quality of the content. We often spend hours studying research papers, technical documents, and expert sources in order to present each topic in a way that will interest rather than burden the reader. In every article, we aim to connect scientific insights with real life, showing how ideas from research centres, universities, and technology labs shape the world around us.

Our long experience in journalism allows us to recognize what is truly important for the reader, whether it is progress in artificial intelligence, medical breakthroughs, energy solutions, space missions, or devices that enter our everyday lives before we even imagine their possibilities. Our view of technology is not purely technical; we are also interested in the human stories behind major advances – researchers who spend years completing projects, engineers who turn ideas into functional systems, and visionaries who push the boundaries of what is possible.

A strong sense of responsibility guides our work as well. We want readers to trust the information we provide, so we verify sources, compare data, and avoid rushing to publish when something is not fully clear. Trust is built more slowly than news is written, but we believe that only such journalism has lasting value.

To us, technology is more than devices, and science is more than theory. These are fields that drive progress, shape society, and create new opportunities for everyone who wants to understand how the world works today and where it is heading tomorrow. That is why we approach every topic with seriousness but also with curiosity, because curiosity opens the door to the best stories.

Our mission is to bring readers closer to a world that is changing faster than ever before, with the conviction that quality journalism can be a bridge between experts, innovators, and all those who want to understand what happens behind the headlines. In this we see our true task: to transform the complex into the understandable, the distant into the familiar, and the unknown into the inspiring.

NOTE FOR OUR READERS
Karlobag.eu provides news, analyses and information on global events and topics of interest to readers worldwide. All published information is for informational purposes only.
We emphasize that we are not experts in scientific, medical, financial or legal fields. Therefore, before making any decisions based on the information from our portal, we recommend that you consult with qualified experts.
Karlobag.eu may contain links to external third-party sites, including affiliate links and sponsored content. If you purchase a product or service through these links, we may earn a commission. We have no control over the content or policies of these sites and assume no responsibility for their accuracy, availability or any transactions conducted through them.
If we publish information about events or ticket sales, please note that we do not sell tickets either directly or via intermediaries. Our portal solely informs readers about events and purchasing opportunities through external sales platforms. We connect readers with partners offering ticket sales services, but do not guarantee their availability, prices or purchase conditions. All ticket information is obtained from third parties and may be subject to change without prior notice. We recommend that you thoroughly check the sales conditions with the selected partner before any purchase, as the Karlobag.eu portal does not assume responsibility for transactions or ticket sale conditions.
All information on our portal is subject to change without prior notice. By using this portal, you agree to read the content at your own risk.