Postavke privatnosti

Kako prirodni jezik ugrađeni programi poboljšavaju točnost i transparentnost velikih jezičnih modela u rasuđivanju i analizi podataka

Veliki jezični modeli, poput ChatGPT-a, uz novu tehniku prirodni jezik ugrađenih programa (NLEP), postižu veću točnost i transparentnost u rasuđivanju, čineći AI modele pouzdanijima i efikasnijima.

Kako prirodni jezik ugrađeni programi poboljšavaju točnost i transparentnost velikih jezičnih modela u rasuđivanju i analizi podataka
Photo by: Domagoj Skledar/ arhiva (vlastita)

CAMBRIDGE, MA – Veliki jezični modeli poput onih koji pokreću ChatGPT pokazali su impresivne rezultate u zadacima poput sastavljanja pravnih dokumenata, analize sentimenta korisničkih recenzija ili prevođenja dokumenata na različite jezike.

Ovi modeli strojnog učenja obično koriste samo prirodni jezik za obradu informacija i odgovaranje na upite, što može otežati izvršavanje zadataka koji zahtijevaju numeričko ili simboličko rasuđivanje.

Na primjer, veliki jezični model mogao bi memorirati i recitirati popis nedavnih američkih predsjednika i njihovih rođendana, ali isti model mogao bi zakazati ako ga se pita "Koji su američki predsjednici izabrani nakon 1950. rođeni u srijedu?" (Odgovor je Jimmy Carter.)

Istraživači s MIT-a i drugih institucija predložili su novu tehniku koja omogućuje velikim jezičnim modelima rješavanje zadataka prirodnog jezika, matematike i analize podataka te simboličkog rasuđivanja generiranjem programa.

Njihov pristup, nazvan prirodni jezik ugrađeni programi (NLEP-ovi), uključuje poticanje jezičnog modela da stvori i izvrši Python program kako bi riješio korisnički upit, a zatim izlaz prikazuje kao prirodni jezik.

Veća točnost i transparentnost
Otkrili su da NLEP-ovi omogućuju velikim jezičnim modelima postizanje veće točnosti u širokom rasponu zadataka rasuđivanja. Pristup je također generaliziran, što znači da se jedan NLEP upit može ponovno koristiti za više zadataka.

NLEP-ovi također poboljšavaju transparentnost, jer korisnik može provjeriti program kako bi vidio kako je model razmišljao o upitu i ispraviti program ako je model dao pogrešan odgovor.

„Želimo da AI izvodi složeno rasuđivanje na način koji je transparentan i pouzdan. Još je dug put pred nama, ali pokazali smo da kombiniranje sposobnosti programiranja i prirodnog jezika u velikim jezičnim modelima predstavlja vrlo dobar prvi korak prema budućnosti u kojoj ljudi mogu u potpunosti razumjeti i vjerovati onome što se događa unutar njihovog AI modela“, kaže Hongyin Luo, doktor znanosti '22, postdoktorand na MIT-u i suvoditelj rada o NLEP-ovima.

Metodologija
Luo je u radu sudjelovao s Tianhua Zhangom, studentom na Kineskom sveučilištu u Hong Kongu, i Jiaxin Geom, studentom preddiplomskog studija na Sveučilištu Peking; Yoon Kim, asistentom na MIT-ovom Odjelu za elektrotehniku i računalne znanosti i članom Laboratorija za računalne znanosti i umjetnu inteligenciju (CSAIL); te Jamesom Glassom, višim znanstvenim istraživačem i voditeljem Grupe za sustave govornog jezika u CSAIL-u. Istraživanje će biti predstavljeno na Godišnjoj konferenciji Sjevernoameričkog ogranka Udruge za računalnu lingvistiku.

Rješavanje problema s programima
Mnogi popularni veliki jezični modeli rade tako da predviđaju sljedeću riječ ili token na temelju nekog unosa na prirodnom jeziku. Iako se modeli poput GPT-4 mogu koristiti za pisanje programa, oni te programe ugrađuju unutar prirodnog jezika, što može dovesti do pogrešaka u programskom rasuđivanju ili rezultatima.

S NLEP-ovima, istraživači s MIT-a primijenili su suprotan pristup. Potaknuli su model da generira program korak po korak u potpunosti u Python kodu, a zatim ugradili potrebni prirodni jezik unutar programa.

NLEP je predložak za rješavanje problema s četiri koraka. Prvo, model poziva potrebne pakete ili funkcije koje će trebati za rješavanje zadatka. Drugi korak uključuje uvoz reprezentacija prirodnog jezika potrebnog znanja za zadatak (poput popisa rođendana američkih predsjednika). Za treći korak, model implementira funkciju koja izračunava odgovor. I u konačnom koraku, model prikazuje rezultat kao liniju prirodnog jezika s automatskom vizualizacijom podataka, ako je potrebno.

„To je poput digitalnog kalkulatora koji vam uvijek daje točan rezultat izračuna sve dok je program ispravan“, kaže Luo.

Korisnik može lako istražiti program i izravno ispraviti sve pogreške u kodu, umjesto da mora ponovo pokretati cijeli model kako bi otklonio poteškoće.

Veća učinkovitost
Pristup također nudi veću učinkovitost od nekih drugih metoda. Ako korisnik ima mnogo sličnih pitanja, može generirati jedan osnovni program, a zatim zamijeniti određene varijable bez potrebe za ponovnim pokretanjem modela.

Kako bi potaknuli model da generira NLEP, istraživači mu daju ukupnu instrukciju da napiše Python program, pružaju dva NLEP primjera (jedan s matematikom i jedan s prirodnim jezikom), te jedno testno pitanje.

„Obično, kada ljudi rade ovu vrstu upita s nekoliko primjera, još uvijek moraju dizajnirati upite za svaki zadatak. Otkrili smo da možemo imati jedan upit za mnoge zadatke jer to nije upit koji uči velike jezične modele da riješe jedan problem, već upit koji uči velike jezične modele da riješe mnoge probleme pisanjem programa“, kaže Luo.

„Imati jezične modele koji rasuđuju s kodom otključava mnoge mogućnosti za korištenje alata, validaciju izlaza, strukturiranije razumijevanje sposobnosti modela i načina razmišljanja te mnogo više“, kaže Leonid Karlinsky, glavni znanstvenik u MIT-IBM Watson AI laboratoriju.

Nema magije
NLEP-ovi su postigli više od 90 posto točnosti kada su potaknuli GPT-4 da riješi niz zadataka simboličkog rasuđivanja, poput praćenja promiješanih objekata ili igranja igre 24, kao i zadataka praćenja uputa i klasifikacije teksta. Istraživači su otkrili da NLEP-ovi pokazuju čak 30 posto veću točnost od metoda specifičnih za zadatke. Metoda je također pokazala poboljšanja u odnosu na otvorene jezične modele.

Uz poboljšanje točnosti velikih jezičnih modela, NLEP-ovi također mogu poboljšati privatnost podataka. Budući da se NLEP programi pokreću lokalno, osjetljivi korisnički podaci ne moraju se slati tvrtkama poput OpenAI ili Googlea da bi ih model obradio.

Osim toga, NLEP-ovi mogu omogućiti malim jezičnim modelima bolje performanse bez potrebe za ponovnim treniranjem modela za određeni zadatak, što može biti skup proces.

„Nema magije ovdje. Nemamo skuplji ili napredniji jezični model. Sve što radimo je korištenje generiranja programa umjesto generiranja prirodnog jezika, i možemo postići značajno bolje performanse“, kaže Luo.

Međutim, NLEP se oslanja na sposobnost generiranja programa modela, tako da tehnika ne funkcionira tako dobro za manje modele koji su trenirani na ograničenim skupovima podataka. U budućnosti, istraživači planiraju proučiti metode koje bi mogle omogućiti manjim jezičnim modelima generiranje učinkovitijih NLEP-ova. Također žele istražiti utjecaj varijacija upita na NLEP-ove kako bi poboljšali robusnost modela u procesima rasuđivanja.

Ovo istraživanje podržao je, dijelom, Centar za perceptivnu i interaktivnu inteligenciju Hong Konga.

Izvor: Massachusetts Institute of Technology

Kreirano: subota, 15. lipnja, 2024.

Pronađite smještaj u blizini

Redakcija za znanost i tehnologiju

Naša Redakcija za znanost i tehnologiju nastala je iz dugogodišnje strasti prema istraživanju, tumačenju i približavanju složenih tema običnim čitateljima. U njoj pišu zaposlenici i volonteri koji već desetljećima prate razvoj znanosti i tehnoloških inovacija, od laboratorijskih otkrića do rješenja koja mijenjaju svakodnevni život. Iako pišemo u množini, iza svakog teksta stoji stvarna osoba s dugim uredničkim i novinarskim iskustvom te dubokim poštovanjem prema činjenicama i provjerljivim informacijama.

Naša redakcija temelji svoj rad na uvjerenju da je znanost najjača kada je dostupna svima. Zato težimo jasnoći, preciznosti i razumljivosti, ali bez pojednostavljivanja koje bi narušilo kvalitetu sadržaja. Često provodimo sate proučavajući istraživanja, tehničke dokumente i stručne izvore kako bismo svaku temu predstavili čitatelju na način koji ga neće opteretiti, nego zainteresirati. U svakom tekstu nastojimo povezati znanstvene spoznaje s realnim životom, pokazujući kako ideje iz istraživačkih centara, sveučilišta i tehnoloških laboratorija oblikuju svijet oko nas.

Dugogodišnje iskustvo u novinarstvu omogućuje nam da prepoznamo što je za čitatelja zaista važno, bilo da se radi o napretku u umjetnoj inteligenciji, medicinskim otkrićima, energetskim rješenjima, svemirskim misijama ili uređajima koji ulaze u našu svakodnevicu prije nego što stignemo uopće zamisliti njihove mogućnosti. Naš pogled na tehnologiju nije isključivo tehnički; zanimaju nas i ljudske priče koje stoje iza velikih pomaka – istraživači koji godinama privode kraju projekte, inženjeri koji pretvaraju ideje u funkcionalne sustave, te vizionari koji guraju granice mogućega.

U radu nas vodi i osjećaj odgovornosti. Želimo da čitatelj može imati povjerenje u informacije koje donosimo, pa provjeravamo izvore, uspoređujemo podatke i ne žurimo s objavom ako nešto nije sasvim jasno. Povjerenje gradimo sporije nego što se piše vijest, ali vjerujemo da je jedino takvo novinarstvo dugoročno vrijedno.

Za nas je tehnologija više od uređaja, a znanost više od teorije. To su područja koja pokreću napredak, oblikuju društvo i pružaju nove mogućnosti svima koji žele razumjeti kako svijet funkcionira danas i kamo ide sutra. Upravo zato u našoj redakciji pristupamo svakoj temi s ozbiljnošću, ali i s dozom znatiželje, jer upravo znatiželja otvara vrata najboljim tekstovima.

Naša je misija približiti čitateljima svijet koji se mijenja brže nego ikada prije, uz uvjerenje da kvalitetno novinarstvo može biti most između stručnjaka, inovatora i svih onih koji žele razumjeti što se događa iza naslova. U tome vidimo svoj pravi zadatak: pretvoriti kompleksno u razumljivo, udaljeno u blisko, a nepoznato u inspirativno.

NAPOMENA ZA NAŠE ČITATELJE
Karlobag.eu pruža vijesti, analize i informacije o globalnim događanjima i temama od interesa za čitatelje širom svijeta. Sve objavljene informacije služe isključivo u informativne svrhe.
Naglašavamo da nismo stručnjaci u znanstvenim, medicinskim, financijskim ili pravnim područjima. Stoga, prije donošenja bilo kakvih odluka temeljenih na informacijama s našeg portala, preporučujemo da se konzultirate s kvalificiranim stručnjacima.
Karlobag.eu može sadržavati poveznice na vanjske stranice trećih strana, uključujući affiliate linkove i sponzorirane sadržaje. Ako kupite proizvod ili uslugu putem ovih poveznica, možemo ostvariti proviziju. Nemamo kontrolu nad sadržajem ili politikama tih stranica te ne snosimo odgovornost za njihovu točnost, dostupnost ili bilo kakve transakcije koje obavite putem njih.
Ako objavljujemo informacije o događajima ili prodaji ulaznica, napominjemo da mi ne prodajemo ulaznice niti izravno niti preko posrednika. Naš portal isključivo informira čitatelje o događajima i mogućnostima kupnje putem vanjskih prodajnih platformi. Povezujemo čitatelje s partnerima koji nude usluge prodaje ulaznica, ali ne jamčimo njihovu dostupnost, cijene ili uvjete kupnje. Sve informacije o ulaznicama preuzete su od trećih strana i mogu biti podložne promjenama bez prethodne najave. Preporučujemo da prije bilo kakve kupnje temeljito provjerite uvjete prodaje kod odabranog partnera, budući da portal Karlobag.eu ne preuzima odgovornost za transakcije ili uvjete prodaje ulaznica.
Sve informacije na našem portalu podložne su promjenama bez prethodne najave. Korištenjem ovog portala prihvaćate da čitate sadržaj na vlastitu odgovornost.