Postavke privatnosti

Istraživanje MIT-a o generalizaciji velikih jezičnih modela i utjecaju ljudskih uvjerenja na njihovu učinkovitost u stvarnim situacijama

Istraživači s MIT-a razvili su okvir za procjenu velikih jezičnih modela (LLM) na temelju ljudskih uvjerenja o njihovim sposobnostima, otkrivajući važnost usklađivanja modela s očekivanjima korisnika za bolju primjenu u stvarnim situacijama.

Istraživanje MIT-a o generalizaciji velikih jezičnih modela i utjecaju ljudskih uvjerenja na njihovu učinkovitost u stvarnim situacijama
Photo by: Domagoj Skledar/ arhiva (vlastita)

Istraživači s MIT-a suočili su se s izazovom vrednovanja velikih jezičnih modela (LLM) zbog njihove široke primjene. U tradicionalnim pristupima teško je obuhvatiti sve vrste pitanja na koja modeli mogu odgovarati. Kako bi riješili ovaj problem, fokusirali su se na ljudske percepcije i uvjerenja o sposobnostima tih modela. Ključni koncept u njihovom istraživanju je funkcija ljudske generalizacije koja modelira način na koji ljudi ažuriraju svoja uvjerenja o LLM-ovima nakon interakcije s njima.

Na primjer, student mora odlučiti hoće li model pomoći pri sastavljanju određenog e-maila, dok liječnik mora procijeniti kada će model biti koristan u dijagnosticiranju pacijenata. Istraživači su razvili okvir za ocjenu LLM-ova na temelju njihove usklađenosti s ljudskim uvjerenjima o izvedbi na određenim zadacima.

Istraživanje funkcije ljudske generalizacije
Kako komuniciramo s drugima, formiramo uvjerenja o njihovim znanjima. Ako je prijatelj sklon ispravljanju gramatike, mogli bismo pretpostaviti da je dobar u sastavljanju rečenica, iako ga nikada nismo pitali za to. Slično tome, istraživači su htjeli pokazati da se isti proces događa kada formiramo uvjerenja o jezičnim modelima.

Definirali su funkciju ljudske generalizacije koja uključuje postavljanje pitanja, promatranje odgovora i zaključivanje o sposobnostima osobe ili modela za slična pitanja. Ako netko vidi da LLM ispravno odgovara na pitanja o inverziji matrica, mogao bi pretpostaviti da je također dobar u jednostavnoj aritmetici. Model koji ne odgovara ovoj funkciji može zakazati kada se koristi.

Istraživači su proveli anketu kako bi izmjerili kako ljudi generaliziraju kada komuniciraju s LLM-ovima i drugim ljudima. Pokazali su sudionicima pitanja koja su osobe ili LLM-ovi točno ili pogrešno odgovorili te ih pitali misle li da bi osoba ili LLM točno odgovorili na srodno pitanje. Rezultati su pokazali da su sudionici bili prilično dobri u predviđanju izvedbe ljudi, ali su bili lošiji u predviđanju izvedbe LLM-ova.

Mjerenje nesklada
Istraživanje je otkrilo da su sudionici bili skloniji ažurirati svoja uvjerenja o LLM-ovima kada su modeli davali netočne odgovore nego kada su odgovarali točno. Također su vjerovali da izvedba LLM-ova na jednostavnim pitanjima nema utjecaja na njihovu izvedbu na složenijim pitanjima. U situacijama gdje su sudionici davali veću težinu netočnim odgovorima, jednostavniji modeli su nadmašili veće modele poput GPT-4.

Daljnje istraživanje i razvoj
Jedno moguće objašnjenje zašto su ljudi lošiji u generaliziranju za LLM-ove može biti njihova novost – ljudi imaju puno manje iskustva u interakciji s LLM-ovima nego s drugim ljudima. U budućnosti, istraživači žele provesti dodatne studije o tome kako se ljudska uvjerenja o LLM-ovima razvijaju tijekom vremena s većom interakcijom s modelima. Također žele istražiti kako bi se ljudska generalizacija mogla uključiti u razvoj LLM-ova.

Jedna od ključnih točaka istraživanja je potreba za boljim razumijevanjem i integriranjem ljudske generalizacije u razvoj i evaluaciju LLM-ova. Predloženi okvir uzima u obzir ljudske faktore prilikom primjene općih LLM-ova kako bi se poboljšala njihova izvedba u stvarnom svijetu i povećalo povjerenje korisnika.

Praktične implikacije ovog istraživanja su značajne. Ako ljudi nemaju pravo razumijevanje kada će LLM-ovi biti točni i kada će pogriješiti, vjerojatnije je da će uočiti pogreške i možda se obeshrabriti za daljnju uporabu. Ova studija naglašava važnost usklađivanja modela s ljudskim razumijevanjem generalizacije. Kako se razvijaju sve složeniji jezični modeli, potrebno je integrirati ljudsku perspektivu u njihov razvoj i evaluaciju.

Praktične implikacije
Ovo istraživanje djelomično je financirano od strane Harvard Data Science Initiative i Center for Applied AI na University of Chicago Booth School of Business. Važno je napomenuti da istraživači također žele koristiti svoj skup podataka kao referentnu točku za usporedbu izvedbe LLM-ova u odnosu na funkciju ljudske generalizacije, što bi moglo pomoći u poboljšanju izvedbe modela u stvarnim situacijama.

Osim toga, istraživači planiraju daljnja istraživanja kako bi razumjeli kako se ljudska uvjerenja o LLM-ovima razvijaju s vremenom kroz interakciju s modelima. Žele istražiti kako se ljudska generalizacija može integrirati u razvoj LLM-ova kako bi se poboljšala njihova izvedba i povećalo povjerenje korisnika. Praktične implikacije ovog istraživanja su dalekosežne, posebno u kontekstu primjene LLM-ova u raznim industrijama, gdje je razumijevanje i povjerenje korisnika ključno za uspješno usvajanje tehnologije.

Jedna od ključnih točaka istraživanja je potreba za boljim razumijevanjem i integriranjem ljudske generalizacije u razvoj i evaluaciju LLM-ova. Predloženi okvir uzima u obzir ljudske faktore prilikom primjene općih LLM-ova kako bi se poboljšala njihova izvedba u stvarnom svijetu i povećalo povjerenje korisnika. Važno je naglasiti da su praktične implikacije ovog istraživanja značajne. Ako ljudi nemaju pravo razumijevanje kada će LLM-ovi biti točni i kada će pogriješiti, vjerojatnije je da će uočiti pogreške i možda se obeshrabriti za daljnju uporabu.

Ova studija naglašava važnost usklađivanja modela s ljudskim razumijevanjem generalizacije. Kako se razvijaju sve složeniji jezični modeli, potrebno je integrirati ljudsku perspektivu u njihov razvoj i evaluaciju. Ovo istraživanje djelomično je financirano od strane Harvard Data Science Initiative i Center for Applied AI na University of Chicago Booth School of Business. Važno je napomenuti da istraživači također žele koristiti svoj skup podataka kao referentnu točku za usporedbu izvedbe LLM-ova u odnosu na funkciju ljudske generalizacije, što bi moglo pomoći u poboljšanju izvedbe modela u stvarnim situacijama.

Praktične implikacije ovog istraživanja su dalekosežne, posebno u kontekstu primjene LLM-ova u raznim industrijama, gdje je razumijevanje i povjerenje korisnika ključno za uspješno usvajanje tehnologije. Jedna od ključnih točaka istraživanja je potreba za boljim razumijevanjem i integriranjem ljudske generalizacije u razvoj i evaluaciju LLM-ova. Predloženi okvir uzima u obzir ljudske faktore prilikom primjene općih LLM-ova kako bi se poboljšala njihova izvedba u stvarnom svijetu i povećalo povjerenje korisnika.

Izvor: Massachusetts Institute of Technology

Kreirano: ponedjeljak, 29. srpnja, 2024.

Pronađite smještaj u blizini

Redakcija za znanost i tehnologiju

Naša Redakcija za znanost i tehnologiju nastala je iz dugogodišnje strasti prema istraživanju, tumačenju i približavanju složenih tema običnim čitateljima. U njoj pišu zaposlenici i volonteri koji već desetljećima prate razvoj znanosti i tehnoloških inovacija, od laboratorijskih otkrića do rješenja koja mijenjaju svakodnevni život. Iako pišemo u množini, iza svakog teksta stoji stvarna osoba s dugim uredničkim i novinarskim iskustvom te dubokim poštovanjem prema činjenicama i provjerljivim informacijama.

Naša redakcija temelji svoj rad na uvjerenju da je znanost najjača kada je dostupna svima. Zato težimo jasnoći, preciznosti i razumljivosti, ali bez pojednostavljivanja koje bi narušilo kvalitetu sadržaja. Često provodimo sate proučavajući istraživanja, tehničke dokumente i stručne izvore kako bismo svaku temu predstavili čitatelju na način koji ga neće opteretiti, nego zainteresirati. U svakom tekstu nastojimo povezati znanstvene spoznaje s realnim životom, pokazujući kako ideje iz istraživačkih centara, sveučilišta i tehnoloških laboratorija oblikuju svijet oko nas.

Dugogodišnje iskustvo u novinarstvu omogućuje nam da prepoznamo što je za čitatelja zaista važno, bilo da se radi o napretku u umjetnoj inteligenciji, medicinskim otkrićima, energetskim rješenjima, svemirskim misijama ili uređajima koji ulaze u našu svakodnevicu prije nego što stignemo uopće zamisliti njihove mogućnosti. Naš pogled na tehnologiju nije isključivo tehnički; zanimaju nas i ljudske priče koje stoje iza velikih pomaka – istraživači koji godinama privode kraju projekte, inženjeri koji pretvaraju ideje u funkcionalne sustave, te vizionari koji guraju granice mogućega.

U radu nas vodi i osjećaj odgovornosti. Želimo da čitatelj može imati povjerenje u informacije koje donosimo, pa provjeravamo izvore, uspoređujemo podatke i ne žurimo s objavom ako nešto nije sasvim jasno. Povjerenje gradimo sporije nego što se piše vijest, ali vjerujemo da je jedino takvo novinarstvo dugoročno vrijedno.

Za nas je tehnologija više od uređaja, a znanost više od teorije. To su područja koja pokreću napredak, oblikuju društvo i pružaju nove mogućnosti svima koji žele razumjeti kako svijet funkcionira danas i kamo ide sutra. Upravo zato u našoj redakciji pristupamo svakoj temi s ozbiljnošću, ali i s dozom znatiželje, jer upravo znatiželja otvara vrata najboljim tekstovima.

Naša je misija približiti čitateljima svijet koji se mijenja brže nego ikada prije, uz uvjerenje da kvalitetno novinarstvo može biti most između stručnjaka, inovatora i svih onih koji žele razumjeti što se događa iza naslova. U tome vidimo svoj pravi zadatak: pretvoriti kompleksno u razumljivo, udaljeno u blisko, a nepoznato u inspirativno.

NAPOMENA ZA NAŠE ČITATELJE
Karlobag.eu pruža vijesti, analize i informacije o globalnim događanjima i temama od interesa za čitatelje širom svijeta. Sve objavljene informacije služe isključivo u informativne svrhe.
Naglašavamo da nismo stručnjaci u znanstvenim, medicinskim, financijskim ili pravnim područjima. Stoga, prije donošenja bilo kakvih odluka temeljenih na informacijama s našeg portala, preporučujemo da se konzultirate s kvalificiranim stručnjacima.
Karlobag.eu može sadržavati poveznice na vanjske stranice trećih strana, uključujući affiliate linkove i sponzorirane sadržaje. Ako kupite proizvod ili uslugu putem ovih poveznica, možemo ostvariti proviziju. Nemamo kontrolu nad sadržajem ili politikama tih stranica te ne snosimo odgovornost za njihovu točnost, dostupnost ili bilo kakve transakcije koje obavite putem njih.
Ako objavljujemo informacije o događajima ili prodaji ulaznica, napominjemo da mi ne prodajemo ulaznice niti izravno niti preko posrednika. Naš portal isključivo informira čitatelje o događajima i mogućnostima kupnje putem vanjskih prodajnih platformi. Povezujemo čitatelje s partnerima koji nude usluge prodaje ulaznica, ali ne jamčimo njihovu dostupnost, cijene ili uvjete kupnje. Sve informacije o ulaznicama preuzete su od trećih strana i mogu biti podložne promjenama bez prethodne najave. Preporučujemo da prije bilo kakve kupnje temeljito provjerite uvjete prodaje kod odabranog partnera, budući da portal Karlobag.eu ne preuzima odgovornost za transakcije ili uvjete prodaje ulaznica.
Sve informacije na našem portalu podložne su promjenama bez prethodne najave. Korištenjem ovog portala prihvaćate da čitate sadržaj na vlastitu odgovornost.